DOI QR코드

DOI QR Code

LEFT VENTRICULAR ROTATION AND TWIST: WHY SHOULD WE LEARN?

  • Nakatani, Satoshi (Division of Functional Diagnostics, Department of Health Sciences, Osaka University Graduate School of Medicine)
  • Published : 2011.03.27

Abstract

The left ventricle twists in systole storing potential energy and untwists (recoils) in diastole releasing the energy. Twist aids left ventricular ejection and untwist aids relaxation and ventricular filling. Therefore, rotation and torsion are important in cardiac mechanics. However, the methodology of their investigations is limited to invasive techniques or magnetic resonance imaging. With the advent of speckle tracking echocardiography, however, rotation and torsion (twist) become familiar to echocardiographers. In this review, I outline the mechanism and influencing factors of rotation and torsion with the anticipation of the routine use of these measurements in clinical practice.

Keywords

References

  1. Hansen DE, Daughters GT 2nd, Alderman EL, Ingels NB Jr, Miller DC. Torsional deformation of the left ventricular midwall in human hearts with intramyocardial markers: regional heterogeneity and sensitivity to the inotropic effects of abrupt rate changes. Circ Res 1988;62:941-52.
  2. Gorman JH 3rd, Gupta KB, Streicher JT, Gorman RC, Jackson BM, Ratcliffe MB, Bogen DK, Edmunds LH Jr. Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J Thorac Cardiovasc Surg 1996;112:712-26.
  3. Buchalter MB, Weiss JL, Rogers WJ, Zerhouni EA, Weisfeldt ML, Beyar R, Shapiro EP. Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging. Circulation 1990;81:1236-44.
  4. Buchalter MB, Rademakers FE, Weiss JL, Rogers WJ, Weisfeldt ML, Shapiro EP. Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: effects of catecholamines, ischaemia, and pacing. Cardiovasc Res 1994;28:629-35.
  5. Mirro MJ, Rogers EW, Weyman AE, Feigenbaum H. Angular displacement of the papillary muscles during the cardiac cycle. Circulation 1979;60:327-33.
  6. Notomi Y, Setser RM, Shiota T, Martin-Miklovic MG, Weaver JA, Popovic ZB, Yamada H, Greenberg NL, White RD, Thomas JD. Assessment of left ventricular torsional deformation by Doppler tissue imaging: validation study with tagged magnetic resonance imaging. Circulation 2005;111:1141-7.
  7. Notomi Y, Lysyansky P, Setser RM, Shiota T, Popovic ZB, Martin-Miklovic MG, Weaver JA, Oryszak SJ, Greenberg NL, White RD, Thomas JD. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol 2005;45:2034-41.
  8. Sengupta PP, Tajik AJ, Chandrasekaran K, Khandheria BK. Twist mechanics of the left ventricle: principles and application. JACC Cardiovasc Imaging 2008;1:366-76. https://doi.org/10.1016/j.jcmg.2008.02.006
  9. Henson RE, Song SK, Pastorek JS, Ackerman JJ, Lorenz CH. Left ventricular torsion is equal in mice and humans. Am J Physiol Heart Circ Physiol 2000;278:H1117-23.
  10. Buckberg GD. Basic science review: the helix and the heart. J Thorac Cardiovasc Surg 2002;124:863-83.
  11. Dong SJ, Hees PS, Siu CO, Weiss JL, Shapiro EP. MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of ${\tau}$. Am J Physiol Heart Circ Physiol 2001;281:H2002-9.
  12. Notomi Y, Popovic ZB, Yamada H, Wallick DW, Martin MG, Oryszak SJ, Shiota T, Greenberg NL, Thomas JD. Ventricular untwisting: a temporal link between left ventricular relaxation and suction. Am J Physiol Heart Circ Physiol 2008;294:H505-13.
  13. Dong SJ, Hees PS, Huang WM, Buffer SA Jr, Weiss JL, Shapiro EP. Independent effects of preload, afterload, and contractility on left ventricular torsion. Am J Physiol 1999;277:H1053-60.
  14. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 2006;355:251-9.
  15. Park SJ, Miyazaki C, Bruce CJ, Ommen S, Miller FA, Oh JK. Left ventricular torsion by two-dimensional speckle tracking echocardiography in patients with diastolic dysfunction and normal ejection fraction. J Am Soc Echocardiogr 2008;21:1129-37.
  16. Wang J, Khoury DS, Yue Y, Torre-Amione G, Nagueh SF. Left ventricular untwisting rate by speckle tracking echocardiography. Circulation 2007;116:2580-6.
  17. Wang J, Khoury DS, Yue Y, Torre-Amione G, Nagueh SF. Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. Eur Heart J 2008;29:1283-9.
  18. Notomi Y, Srinath G, Shiota T, Martin-Miklovic MG, Beachler L, Howell K, Oryszak SJ, Deserranno DG, Freed AD, Greenberg NL, Younoszai A, Thomas JD. Maturational and adaptive modulation of left ventricular torsional biomechanics: Doppler tissue imaging observation from infancy to adulthood. Circulation 2006;113:2534-41.
  19. Takeuchi M, Nakai H, Kokumai M, Nishikage T, Otani S, Lang RM. Age-related changes in left ventricular twist assessed by two-dimensional speckle-tracking imaging. J Am Soc Echocardiogr 2006;19:1077-84.
  20. Young AA, Kramer CM, Ferrari VA, Axel L, Reichek N. Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation 1994;90:854-67.
  21. van Dalen BM, Kauer F, Vletter WB, Soliman OI, van der Zwaan HB, Ten Cate FJ, Geleijnse ML. Influence of cardiac shape on left ventricular twist. J Appl Physiol 2010;108:146-51.
  22. Tanaka H, Oishi Y, Mizuguchi Y, Miyoshi H, Ishimoto T, Nagase N, Yamada H, Oki T. Contribution of the pericardium to left ventricular torsion and regional myocardial function in patients with total absence of the left pericardium. J Am Soc Echocardiogr 2008;21:268-74.
  23. Chang SA, Kim HK, Kim YJ, Cho GY, Oh S, Sohn DW. Role of pericardium in the maintenance of left ventricular twist. Heart 2010;96:785-90.

Cited by

  1. Left ventricular rotation and twist of the heart. Let’s reveal some concepts vol.153, pp.39, 2011, https://doi.org/10.1556/oh.2012.29465
  2. Emerging role of echocardiographic strain/strain rate imaging and twist in systolic function evaluation and operative procedure in patients with aortic stenosis vol.17, pp.2, 2011, https://doi.org/10.1093/icvts/ivt171
  3. Intraoperative Cardiac Ultrasound Examination Using Vector Flow Imaging vol.35, pp.4, 2013, https://doi.org/10.1177/0161734613505552
  4. Energy Harvesting from the Cardiovascular System, or How to Get a Little Help from Yourself vol.41, pp.11, 2013, https://doi.org/10.1007/s10439-013-0887-2
  5. Evaluation of left ventricular torsion in children with hypertrophic cardiomyopathy vol.24, pp.2, 2011, https://doi.org/10.1017/s104795111300005x
  6. Left ventricular rotation and right-left ventricular interaction in congenital heart disease: the acute effects of interventional closure of patent arterial ducts and atrial septal defects vol.24, pp.4, 2014, https://doi.org/10.1017/s1047951113000978
  7. Three-dimensional speckle-tracking echocardiography in Loeffler endocarditis : Case report from the MAGYAR-Path Study vol.39, pp.6, 2011, https://doi.org/10.1007/s00059-013-3864-5
  8. BIOMECHANICS OF POSITIVE INTRATHORACIC PRESSURE AND ITS EFFECTS ON LEFT VENTRICULAR FILLING IN HEALTHY SUBJECTS vol.15, pp.6, 2011, https://doi.org/10.1142/s0219519415400576
  9. Regional assessment of LV wall in infarcted heart using tagged MRI and cardiac modelling vol.60, pp.10, 2011, https://doi.org/10.1088/0031-9155/60/10/4015
  10. Atrioventricular plane displacement is the sole mechanism of atrial and ventricular refill vol.308, pp.11, 2011, https://doi.org/10.1152/ajpheart.00058.2015
  11. Different responses of the myocardial contractility by layer following acute pressure unloading in severe aortic stenosis patients vol.32, pp.2, 2011, https://doi.org/10.1007/s10554-015-0759-y
  12. Non-Invasive Evaluation of Heart Function with Four-Dimensional Echocardiography vol.11, pp.5, 2016, https://doi.org/10.1371/journal.pone.0154996
  13. Mechanical effects of left ventricular midwall fibrosis in non-ischemic cardiomyopathy vol.18, pp.None, 2011, https://doi.org/10.1186/s12968-015-0221-2
  14. Timing of the negative effects of trastuzumab on cardiac mechanics after anthracycline chemotherapy vol.33, pp.2, 2011, https://doi.org/10.1007/s10554-016-0987-9
  15. Left Ventricular Speckle Tracking-Derived Cardiac Strain and Cardiac Twist Mechanics in Athletes: A Systematic Review and Meta-Analysis of Controlled Studies vol.47, pp.6, 2011, https://doi.org/10.1007/s40279-016-0644-4
  16. A mock heart engineered with helical aramid fibers for in vitro cardiovascular device testing vol.62, pp.2, 2011, https://doi.org/10.1515/bmt-2016-0106
  17. A mock heart engineered with helical aramid fibers for in vitro cardiovascular device testing vol.62, pp.2, 2011, https://doi.org/10.1515/bmt-2016-0106
  18. HeartSense : Ubiquitous Accurate Multi-Modal Fusion-based Heart Rate Estimation Using Smartphones vol.1, pp.3, 2017, https://doi.org/10.1145/3132028
  19. Pyridoxamine improves survival and limits cardiac dysfunction after MI vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-16255-y
  20. Reference ranges for three-dimensional feature tracking cardiac magnetic resonance: comparison with two-dimensional methodology and relevance of age and gender vol.34, pp.5, 2011, https://doi.org/10.1007/s10554-017-1277-x
  21. Echo and heart failure: when do people need an echo, and when do they need natriuretic peptides? vol.5, pp.2, 2011, https://doi.org/10.1530/erp-18-0004
  22. Can We Engineer a Human Cardiac Patch for Therapy? vol.123, pp.2, 2018, https://doi.org/10.1161/circresaha.118.311213
  23. Towards predictive computer simulations in cardiology: Finite element analysis of personalized heart models vol.98, pp.12, 2011, https://doi.org/10.1002/zamm.201800055
  24. Correlation between Left Ventricular End Diastolic Pressure and Torsion Dynamics in Patients with Diastolic Dysfunction, Speckle Tracking Imaging Study vol.9, pp.2, 2011, https://doi.org/10.4236/wjcd.2019.92009
  25. Assessment of Left Ventricular Torsion in Hypertensive Patients vol.9, pp.2, 2011, https://doi.org/10.4236/wjcd.2019.92011
  26. Cardiovascular Evaluation of Children With Malignancies vol.21, pp.3, 2019, https://doi.org/10.1007/s11936-019-0719-2
  27. Normal values of left ventricular rotational parameters in healthy adults-Insights from the three‐dimensional speckle tracking echocardiographic MAGYAR ‐Healthy Study vol.36, pp.4, 2019, https://doi.org/10.1111/echo.14285
  28. Structural and Biomechanical Adaptations of Right Ventricular Remodeling-In Pulmonary Arterial Hypertension-Reduces Left Ventricular Rotation During Contraction: A Computational Study vol.141, pp.5, 2011, https://doi.org/10.1115/1.4042682
  29. Computational Modeling of Human Left Ventricle to Assess the Effects of Trabeculae Carneae on the Diastolic and Systolic Functions vol.141, pp.9, 2019, https://doi.org/10.1115/1.4043831
  30. Finite Element Driven Design Domain Identification of a Beating Left Ventricular Simulator vol.6, pp.3, 2019, https://doi.org/10.3390/bioengineering6030083
  31. Design, simulation, and fabrication of a three-dimensional printed pump mimicking the left ventricle motion vol.42, pp.10, 2011, https://doi.org/10.1177/0391398819856892
  32. Left ventricular rotational mechanics in hypereosinophilic syndrome-Analysis from the three‐dimensional speckle‐tracking echocardiographic MAGYAR‐Path Study vol.36, pp.11, 2011, https://doi.org/10.1111/echo.14517
  33. Válvula aórtica bicúspide: El prolapso y la calcificación valvular aórtica son marcadores de disfunción valvular significativa y de eventos cardiovasculares m vol.87, pp.6, 2011, https://doi.org/10.7775/rac.es.v87.i6.16591
  34. Left ventricular apical rotation is associated with mitral annular function in healthy subjects. Results from the three-dimensional speckle-tracking echocardiographic MAGYAR-Healthy Study vol.107, pp.1, 2011, https://doi.org/10.1556/2060.2020.00002
  35. Left ventricular apical rotation is associated with mitral annular function in healthy subjects. Results from the three-dimensional speckle-tracking echocardiographic MAGYAR-Healthy Study vol.107, pp.1, 2011, https://doi.org/10.1556/2060.2020.00002
  36. Elastohydrodynamic Scaling Law for Heart Rates vol.125, pp.5, 2011, https://doi.org/10.1103/physrevlett.125.058102
  37. Left ventricular rotational deformation changes by speckle tracking imaging before and 24 hours after transcatheter closure of large secundum atrial septal defects in children vol.37, pp.7, 2011, https://doi.org/10.1111/echo.14755
  38. The impact of lower body compression garment on left ventricular rotational mechanics in patients with lipedema-Insights from the three‐dimensional speckle tracking echocardiographic MAG vol.10, pp.5, 2011, https://doi.org/10.1111/cob.12380
  39. Echocardiographic characteristics of patients with SARS-CoV-2 infection vol.109, pp.12, 2020, https://doi.org/10.1007/s00392-020-01727-5
  40. Left Ventricular Rotational Abnormalities in Treated Hypopituitarism: Insights From the Three-Dimensional Speckle-Tracking Echocardiographic MAGYAR-Path Study vol.8, pp.None, 2021, https://doi.org/10.3389/fcvm.2021.703146
  41. Comparison of left ventricular rotational mechanics between term and extremely premature infants over the first week of age vol.8, pp.1, 2011, https://doi.org/10.1136/openhrt-2020-001458
  42. Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction vol.6, pp.7, 2011, https://doi.org/10.1016/j.bioactmat.2020.12.015
  43. Left ventricular rotational mechanics in elite athletes doing high dynamic sports. Insights from the 3D speckle-tracking echocardiographic MAGYAR-Sport Study vol.61, pp.7, 2011, https://doi.org/10.23736/s0022-4707.21.11573-7
  44. Assessment of left ventricular twist by 3D ballistocardiography and seismocardiography compared with 2D STI echocardiography in a context of enhanced inotropism in healthy subjects vol.11, pp.1, 2011, https://doi.org/10.1038/s41598-020-79933-4
  45. Comparison of left ventricular deformity and twist parameters during Speckle Tracking with Philips iE33 and Affiniti 70 scanners vol.63, pp.6, 2011, https://doi.org/10.33678/cor.2021.104