• Title/Summary/Keyword: Cardiac mechanics

Search Result 13, Processing Time 0.025 seconds

Mechanical Analysis of heart muscle using a computational model of cardiac myocyte (심근세포 모델을 이용한 심장근육의 역학적 분석)

  • 심은보;김헌영;임채헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1176-1179
    • /
    • 2004
  • A new cell-cross bridge mechanics model is proposed to analyze the mechanics of heart muscle. Electrophysiology of a cardiac cell is numerically approximated using the previous model of human ventricular myocyte. Ion transports across cell membrane initiated by action potential induce excitation-contraction mechanism in the cell via cross bridge dynamics. Negroni and Lascano model (NL model) is employed to compute the tension of cross bridge closely related to ion dynamics in cytoplasm.

  • PDF

Computational analysis of heart mechanics using a cell-autonomic nerve control-hemodynamic system coupled model (세포-신경계-혈류역학 시스템 통합모델에 의한 심장역학 분석)

  • Jun, Hyung-Min;Shim, Eun-Bo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2941-2946
    • /
    • 2007
  • A model of the cardiovascular system coupling cell, hemodynamics and autonomic nervecontrol function is proposed for analyzing heart mechanics. We developed a comprehensive cardiovascular model with multi-physics and multi-scale characteristics that simulates the physiological events from membrane excitation of a cardiac cell to contraction of the human heart and systemic blood circulation and ultimately to autonomic nerve control. Using this model, we delineatedthe cellular mechanism of heart contractility mediated by nerve control function. To verify the integrated method, we simulated a 10% hemorrhage, which involves cardiac cell mechanics, circulatory hemodynamics, and nerve control function. The computed and experimental results were compared. Using this methodology, the state of cardiac contractility, influenced by diverse properties such as the afterload and nerve control systems, is easily assessed in an integrated manner.

  • PDF

Computational analysis of hemodynamics in a human ventricular model (인간 심실모델에서의 혈류역학 해석)

  • Shim, Eun-Bo;Kwon, Soon-Sung;Kim, Yoo-Seok;Jung, Hyung-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2947-2950
    • /
    • 2007
  • A 3D human ventricular model is proposed to simulate an integrative analysis of heart physiology and blood hemodynamics. This consists of the models of electrophysiology of human cells, electric wave propagation of tissue, heart solid mechanics, and 3D blood hemodynamics. The 3D geometry of human heart is discretized to a finite element mesh for the simulation of electric wave propagation and mechanics of heart. In cellular level, excitations by action potential are simulated using the existing human model. Then the contraction mechanics of a whole cell is incorporated to the excitation model. The excitation propagation to ventricular cells are transiently computed in the 3D cardiac tissue using a mono-domain method of electric wave propagation in cardiac tissue. Blood hemodynamics in heart is also considered and incorporated with muscle contraction. We use a PISO type finite element method to simulate the blood hemodynmaics in the human ventricular model.

  • PDF

A Multi-scale Simulation Model of Circulation Combining Cardiovascular Hemodynamics with Cardiac Cell Mechanism (심근세포-심혈관계 혈류역학이 결합된 복합적 순환계 모델에 관한 연구)

  • Ko Hyung Jong;Leem Chae Hun;Shim Eun Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1164-1171
    • /
    • 2004
  • A new multi-scale simulation model is proposed to analyze heart mechanics. Electrophysiology of a cardiac cell is numerically approximated using the previous model of human ventricular myocyte. The ion transports across cell membrane initiated by action potential induce an excitation-contraction mechanism in the cell via cross bridge dynamics. Negroni and Lascano model (NL model) is employed to calculate the tension of cross bridge which is closely related to the ion dynamics in cytoplasm. To convert the tension on cell level into contraction force of cardiac muscle, we introduce a simple geometric model of ventricle with a thin-walled hemispheric shape. It is assumed that cardiac tissue is composed of a set of cardiac myocytes and its orientation on the hemispheric surface of ventricle remains constant everywhere in the domain. Application of Laplace law to the ventricle model enables us to determine the ventricular pressure that induces blood circulation in a body. A lumped parameter model with 7 compartments is utilized to describe the systemic circulation interacting with the cardiac cell mechanism via NL model and Laplace law. Numerical simulation shows that the ion transports in cell level eventually generate blood hemodynamics on system level via cross bridge dynamics and Laplace law. Computational results using the present multi-scale model are well compared with the existing ones. Especially it is shown that the typical characteristics of heart mechanics, such as pressure volume relation, stroke volume and ejection fraction, can be generated by the present multi-scale cardiovascular model, covering from cardiac cells to circulation system.

Flow Visualizations and Laser Doppler Velocity Measurements in a Fontan Connection

  • Kim, Young-H.;Yoganathan, Ajit P.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.111-114
    • /
    • 1994
  • Three component velocity measurements with a refractive index-matching technique was used to investigate the flow characteristics in the atrio-pulmomnary (AP) Fontan connection under the steady flow condition. A strong swirl was observed in the extra-cardiac conduit and the main pulmonary artery (MPA). Maximum velocity magnitude in the MPA was about 0.8 m/s near the posterior wall at 6 liter/min. Swirling motion of the flow as well as geometric abnormalities of the connection are important factors in energy loss across Fontan connections.

  • PDF

A Structural Analysis on the Leaflet Motion Induced by the Blood Flow for Design of a Bileaflet Mechanical Heart Valve Prosthesis

  • Kwon, Young-Joo;Kim, Chang-Nyung;Lee, Jae-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1316-1323
    • /
    • 2003
  • This paper presents a structural analysis on the rigid and deformed motion of the leaflet induced by the blood flow required in the design of a bileaflet mechanical heart valve (MHV) prosthesis. In the study on the design and the mechanical characteristics of a bileaflet mechanical heart valve, the fluid mechanics analysis on the blood flow passing through leaflets, the kinetodynamics analysis on the rigid body motion of the leaflet induced by the pulsatile blood flow, and the structural mechanics analysis on the deformed motion of the leaflet are required sequentially and simultaneously. Fluid forces computed in the previous hemodynamics analysis on the blood flow are used in the kinetodynamics analysis on the rigid body motion of the leaflet. Thereafter, the structural mechanics analysis on the deformed motion of the leaflet follows to predict the structural strength variation of the leaflet as the leaflet thickness changes. Analysis results show that structural deformations and stresses increase as the fluid pressure increases and the leaflet thickness decreases. Analysis results also show that the leaflet becomes structurally weaker and weaker as the leaflet thickness becomes smaller than 0.6 mm.

Nitric Oxide Modulates Calcium Current in Cardiac Myocytes but not in Intact Atrial Tissues (심근세포 및 혈관 평활근에 대한 Nitric Oxide 작용의 민감성의 차이)

  • Park, Choon-Ok;Kang, Young-Jin;Lee, Hoi-Young;Chang, Ki-Churl
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.279-284
    • /
    • 1995
  • The aim of the present study was to know whether exogenously administered nitric oxide (NO) may differently modulate muscle mechanics between heart and aorta. We used PIANO method to generate NO. In isolated rat atrial tissues, neither heart rate nor contractility was affected by PIANO $(STZ,\;30{\sim}100\;{\mu}M)$. Only high concentration $(100\;{\mu}M)$ of 8-bromo cyclic GMP slightly depressed cardiac contractility. However, the same concentrations of 8-Br cGMP and PIANO significantly relaxed the rat thoracic aorta contracted with phenylephrine $(0.1\;{\mu}M)$. In isolated rabbit cardiac atrial myocytes, the amplitude of calcium currents were decreased in the whole voltage range by the presence of streptozotocin, which was further potentiated by UV light. Calcium currents were also decreased in those preparations treated with bradykinin, nitroprusside and 8-Br cGMP. These findings suggest that exogenous NO may modulate calcium current in cardiac myocyte. However, it remains why this does not affect myocardial contractility and heart rate. We concluded that NO may differently regulate calcium signal between aorta and heart muscle.

  • PDF

Computational predictions of improved of wall mechanics and function of the infarcted left ventricle at early and late remodelling stages: comparison of layered and bulk hydrogel injectates

  • Kortsmit, Jeroen;Davies, Neil H.;Miller, Renee;Zilla, Peter;Franz, Thomas
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.41-55
    • /
    • 2014
  • Acellular intra-myocardial biomaterial injections have been shown to be therapeutically beneficial in inhibiting ventricular remodelling of myocardial infarction (MI). Based on a biventricular canine cardiac geometry, various finite element models were developed that comprised an ischemic (II) or scarred infarct (SDI) in left ventricular (LV) antero-apical region, without and with intra-myocardial biomaterial injectate in layered (L) and bulk (B) distribution. Changes in myocardial properties and LV geometry were implemented corresponding to infarct stage (tissue softening vs. stiffening, infarct thinning, and cavity dilation) and injectate (infarct thickening). The layered and bulk injectate increased ejection fraction of the infarcted LV by 77% (II+L) and 25% (II+B) at the ischemic stage and by 61% (SDI+L) and 63% (SDI+B) at the remodelling stage. The injectates decreased the mean end-systolic myofibre stress in the infarct by 99% (II+L), 97% (II+B), 70% (SDI+L) and 36% (SDI+B). The bulk injectate was slightly more effective in improving LV function at the remodelling stage whereas the layered injectate was superior in functional improvement at ischemic stage and in reduction of wall stress at ischemic and remodelling stage. These findings may stimulate and guide further research towards tailoring acellular biomaterial injectate therapies for MI.

Computational analysis of the electromechanical performance of mitral valve cerclage annuloplasty using a patient-specific ventricular model

  • Lee, Kyung Eun;Kim, Ki Tae;Lee, Jong Ho;Jung, Sujin;Kim, June-Hong;Shim, Eun Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • We aimed to propose a novel computational approach to predict the electromechanical performance of pre- and post-mitral valve cerclage annuloplasty (MVCA). Furthermore, we tested a virtual estimation method to optimize the left ventricular basement tightening scheme using a pre-MVCA computer model. The present model combines the three-dimensional (3D) electromechanics of the ventricles with the vascular hemodynamics implemented in a lumped parameter model. 3D models of pre- and post-MVCA were reconstructed from the computed tomography (CT) images of two patients and simulated by solving the electromechanical-governing equations with the finite element method. Computed results indicate that reduction of the dilated heart chambers volume (reverse remodeling) appears to be dependent on ventricular stress distribution. Reduced ventricular stresses in the basement after MVCA treatment were observed in the patients who showed reverse remodeling of heart during follow up over 6 months. In the case who failed to show reverse remodeling after MVCA, more virtual tightening of the ventricular basement diameter than the actual model can induce stress unloading, aiding in heart recovery. The simulation result that virtual tightening of the ventricular basement resulted in a marked increase of myocardial stress unloading provides in silico evidence for a functional impact of MVCA treatment on cardiac mechanics and post-operative heart recovery. This technique contributes to establishing a pre-operative virtual rehearsal procedure before MVCA treatment by using patient-specific cardiac electromechanical modeling of pre-MVCA.