DOI QR코드

DOI QR Code

FRACTIONAL GAGLIARDO-NIRENBERG INEQUALITY

  • Received : 2011.07.05
  • Accepted : 2011.08.25
  • Published : 2011.09.30

Abstract

A fractional Gagliardo-Nirenberg inequality is established. A sharp fractional Sobolev inequality is discussed as a direct consequence.

Keywords

References

  1. W. Beckner, Inequalities in Fourier analysis, Ann. Math. 102 (1975), 159-182. https://doi.org/10.2307/1970980
  2. W. Beckner, Geometric inequalities in Fourier analysis, Essays on Fourier Analysis in honor of Elias M. Stein, Princeton University Press, 36-68, 1995.
  3. W. Beckner, Pitt's inequality with sharp convolution estimates, Proc. Amer. Math. Soc. 136 (2008), 1871-1885.
  4. W. Beckner, Sobolev inequalities, the Poisson semigroup, and analysis on the sphere $S^{n}$, Proc. Natl. Acad. Sci. 89 (1992), 4816-4819. https://doi.org/10.1073/pnas.89.11.4816
  5. J. Escobar, Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J. 37 (1988), 687-698. https://doi.org/10.1512/iumj.1988.37.37033
  6. L. C. Evans, Partial differentail equaltions, Volume 19 of Graduate Studies in Mathematics, AMS, 1998.
  7. E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related in- equalities, Ann. of Math. 118 (1983), 349-374. https://doi.org/10.2307/2007032
  8. E. H. Lieb and M. Loss, Analysis, Volume 14 of Graduate Studies in Mathe- matics, AMS, 1997.
  9. B. Wang, Necessary and suffcient conditions for the fractional Gagliardo- Nirenberg inequalities, arXiv:1004.4287v1 [math.FA] 24 Apr 2010.