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FRACTIONAL GAGLIARDO-NIRENBERG INEQUALITY

YouNG JA PARK*

ABSTRACT. A fractional Gagliardo-Nirenberg inequality is estab-
lished. A sharp fractional Sobolev inequality is discussed as a direct
consequence.

1. Introduction

Fractional differential equations have been of increasing importance
for the past decades due to their diverse applications in science and engi-
neering. Some of such areas are fluid flow, solute transport or dynamical
processes in self-similar and porous structures, diffusive transport, ma-
terial viscoelastic theory, electromagnetic theory, optics and signal pro-
cessing, bio-sciences, economics, geology, and astrophysics. Fractional
integral inequalities certainly provide fundamental tools for the study
of fractional differential equations and optimizing problems including
fractional Laplacian.

In this paper, we establish a fractional version of Gagliardo-Nirenberg
inequality(Theorem 2.1). We make an effort to deliver a simple and
direct proof in order to present a useful upper bound of the constant
based on the effective upper bound of the constant in Hardy-Littlewood-
Sobolev inequality. In fact, when we set up the fractional Gagliardo-
Nirenberg inequalities, we found Wang’s preprint [9] in which fractional
Gagliardo-Nirenberg inequalities have been built via Littlewood-Paley
decomposition. We present a totally different way of proof - we exhibit
a self-contained simple and elegant proof, and provide a wuseful upper
bound for the constant which was not accessible in Wang’s proof. This
upper bound plays an important role in actual applications [5]. A long
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standing problem of the optimality of the constants in the (classical)
Gagliardo-Nirenberg inequalities is still open. Using this line of the
proof, however, we could establish a sharp form of a fractional Sobolev
inequality(Corollary 2.2).

Among some equivalent definitions of the fractional Laplacian, we
employ it as

V=ATo=FN - PF9)),
where @ = F(u) represents the Fourier transform of w on R" defined by

f(&) = F(NHE) = - f(@)e ¢ dz

for f € LY(R™) N L?(R").

2. Fractional Gagliardo-Nirenberg inequality

Gagliardo-Nirenberg inequality for fractional Laplacian is presented,
and a sharp form of the fractional Sobolev inequality is obtained as a
corollary.

THEOREM 2.1. Let m,q,0 € R\ {0} with ¢ # mf > 0, 0 < s < n,
1 <p< % and 1< _——. Then the inequality

q—mb"
(2.1)

/n lu(z)|?dz < Co </ I\/isu(x)wczx) v (/ |u(:v)|7"dx>

holds for the indices with the relation

(2.2) m9(1—8)+q_m9:1.

qg—mé

P n T

The sharp constant Cy satisfies

G 2 PGy ree) g (1
s F(%)F(%) sp 1-—

In particular, when m = ¢, we have a fractional version of Gagliardo-

Nirenberg inequality:

(2.3)
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where the indices satisfy the relation

(2.4) 9(1—5>+1_9:1.

P n r q

Proof. For convenience, we use the notation ||ul| ¢ := ([gn |u(z) |tdm)%
for any t € R\{0}. First we point out by the standard dilation argument
that the index relation (2.2) is necessary. In fact, by replacing u(-) with
u(0 -), we can observe that

7)oy (mI=a)

_ (s=%) T 6
0" |ullfy < Cod 7 V=2 g |l

for all § > 0, which forces the relation (2.2).
Now, for any u € S(R™)(the Schwartz class), we have

| u@pde = [ @l

_ 1 1
(2.5) <™ o llul ™ ey =+ = =1
p T
—mb
=l s 1wl g e
We set mfp := pg and (¢ — m#)7 := r to have
(26) | )it < g ™
and ’;f—f + q—;n@ = 1. Let vV=A"u:= f, and we have
1 T3 fy
u(z) = =
25n/2 T(2)  Jro |z — Y|
1 I'(%2) V=27 u(y
dy.

— 2
= 257rn/2 F% R ’Q?— |n s

Indeed, we may take the Fourier transform on v—A “u = f, and take it
back to have u after solving for . Therefore Hardy-Littlewood-Sobolev
inequality yields

1 (%2
(2.7) HuHLpo <

= 2spn/2 T(3 ClHF

)

where C is a positive constant(see the comments after the proof) and
p satisfies

1 n-—s 1
(2.8) -+ =14 —.
p n Po
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This index relation combined with the index relation appeared at (2.6)
implies (2.2), and (2.6) together with (2.7) implies (2.1). O

The extremals and the best constant C of Hardy-Littlewood-Sobolev
inequality for some special cases are known (see [7] or Section 4.3 in [8]).
Thanks to those cases, we have a sharp form of a fractional Sobolev
inequality:

COROLLARY 2.2 (Fractional Sobolev inequality). For 0 < s < n,
1 <p<®andq= £ we have

n—ps’
lullzo < Co'* [ V=24

The sharp constant for the inequality for the case p =

v’
2n
n+s

2n
n—s

and q =

is y
Tr’s—sr(tp{r(n)}s/” !

22 () (I(3)
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