• Title/Summary/Keyword: Turbidity flow

Search Result 155, Processing Time 0.036 seconds

A Real-time Monitoring and Modeling of Turbidity Flow into a Reservoir (실시간 저수지 탁수 감시 및 예측 모의)

  • Chung, Se-Woong;Ko, Ick-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1184-1188
    • /
    • 2005
  • The impacts of turbidity flow induced by summer rainfall events on water supply, aquatic ecosystems, and socioeconomics are significant and major concerns in most of reservoirs operations. As a decision support tool, the real-time turbidity flow monitoring and modeling system RTMMS is under development using a laterally integrated two-dimensional (2D) hydrodynamic and water quality model. The objectives of this paper is to present the preliminary field observation results on the characteristics of rainfall-induced turbidity flows and their density flow regimes, and the model performance in replicating the fate and transport of turbidity plume in a reservoir. The rainfall-induced turbidity flows caused significant drop of river water temperature by 5 to $10^{\circ}C$ and resulted in density differences of 1.2 to $2.6kg/m^3$ between inflow water and ambient reservoir water, which consequently led development of density flows such as plunge flow and interflow in the reservoir. The 2D model was set up for the reservoir. and applied to simulate the temperature stratification, density flow regimes, and temporal and spatial turbidity distributions during flood season of 2004 After intensive refinements on grid resolutions , the model showed efficient and satisfactory performance in simulating the observed reservoir thermal stratification and turbidity profiles that all are essentially required to enhance the performance of RTMMS.

  • PDF

Development of Turbidity Backward Tracking Scheme Using Py_STPS Model and Monitoring Data (Py_STPS모형과 관측자료를 활용한 탁도역추적기법 개발)

  • Hong Koo Yeo;Namjoo Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.125-134
    • /
    • 2023
  • In order to develop a backtracking technique for turbidity measurement data without discriminatory characteristics, three turbidity backtracking techniques for predicting inflow turbidity of a stream were compared using real-time turbidity data measured at automatic water quality measurement points located upstream and downstream of the stream and the Py_STPS model. Three turbidity backtracking techniques were applied: 1) simple preservation method of turbidity load considering flow time, 2) a method of using the flow rate at the upstream boundary considering the flow time as the flow rate at the downstream boundary, 3) method of introducing internal reaction rate to reflect the behavior characteristics of turbidity-causing substances. As a result of applying the three backtracking models, it was confirmed that the backtracking technique that introduced the internal reaction rate had the best results.

Evaluation of Turbidity Removal Efficiency on under Flow Water by Pore Controllable Fiber Filtration (공극제어형 섬유사 여과기를 이용한 복류수의 탁도 제거효율 평가)

  • Kim, Jeong-Hyun;Bae, Chul-Ho;Kim, Chung-Hwan;Park, No-Suk;Lee, Sun-Ju;Anh, Hyo-Won;Huh, Hyun-Chul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.135-143
    • /
    • 2005
  • It was evaluated that the effect of turbidity removal by Pore Controllable Fiber Filter(PCF) installed in NS(Naksang) small water treatmant plant(system) using under flow water as raw water in the study. The results of the study are as the followings. Firstly, the removal efficiency of turbidity by PCF without coagulation(in operation mode not using coagulants) was mostly below 20 percent. On the other hand, when operation using proper coagulants, that of turbidity was mostly over 80 percent. Secondly, slow sand filtration after PCF, total turbidity removal efficiency of final treated water was 84.3 percent, and the contribution by PCF was 57.1 percent and that of slow sand filtration was 27.7 percent. Therefore the introduction of PCF as pre-treatment process would be helpful to reduce the loading of high turbidity of slow sand filtration. Thirdly, the results of particle counter measurements showed that when operated PCF with coagulants, fine flocs captured or adsorbed at the pore of PCF were flow out into the effluents from 120 minutes after backwashing because of the increase of headloss of PCF. Therefore the decision of backwashing time should made consideration into the outflow of fine flocs from PCF. Fourth, coagulant dosages on PCF at the same turbidity was largely variable because of the effect of the raw water characteristics and the turbidity increase velocity at rainy days, therefore flexible coagulant dosages should be considered rather than fixed coagulant dosage by the influent jar-test result.

Flow regimes and water quality impact of turbidity current into a stratified reservoir (성층 저수지로 유입하는 탁류의 유동특성과 영향에 관한 연구)

  • Chung, Se-Woong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.269-272
    • /
    • 2002
  • Turbidity currents, often develop after heavy storm events, deliver various non-point pollutants and tend to lead eutrophication, depressed dissolved oxygen, and sedimentation in reservoirs. Field observations were performed to investigate the flow regimes of turbidity currents and their impact on reservoir water quality in Daecheong Reservoir. A 2D laterally-averaged hydrodynamic and water quality model was applied to simulate the temporal and spatial distributions of turbidity in the reservoir, and evaluated by comparing with the field data.

  • PDF

Application of Horizontal Flow Fins Inclined Plate for Sedimentation Efficiencies Improvement in River Water with High Turbidity (고탁도 원수의 침전효율 증대를 위한 수평류식 핀 경사판 적용에 관한 연구)

  • Choi, Jung-Su;Jin, Oh-Suk;Joo, Hyun-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.644-650
    • /
    • 2012
  • The purpose of this study is to evaluate the applicability of Horizontal Flow Fins Inclined Plate (HFIP) for the removal of high-turbidity raw water in water treatment plant. As an experimental result, treated water quality and removal efficiency were 0.34 NTU and 90.45% by the application of HFIP for low-turbidity raw water and for the high-turbidity influent resulted 0.75 NTU and 97.27% in removal efficiency. In view of stability for discharge water NTU, the standard deviation were found as 0.12 NTU for low-turbidity and 0.75 NTU for high-turbidity raw water indicating low fluctuations. Result of flow analysis using CFD (Computational Fluid Dynamic) that the addition of HFIP improves the turbidity treatment followed by the stabilization of flow velocity distribution and increases in settling velocity.

Turbidity Modeling for a Negative Buoyant Density Flow in a Reservoir with Consideration of Multiple Particle Sizes (입자크기 분포를 고려한 부력침강 저수지 밀도류의 탁도 모델링)

  • Chung, Se Woong;Lee, Heung Soo;Jung, Yong Rak
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.365-377
    • /
    • 2008
  • Large artificial dam reservoirs and associated downstream ecosystems are under increased pressure from long-term negative impacts of turbid flood runoff. Despite various emerging issues of reservoir turbidity flow, turbidity modeling studies have been rare due to lack of experimental data that can support scientific interpretation. Modeling suspended sediment (SS) dynamics, and therefore turbidity ($C_T$), requires provision of constitutive relationships ($SS-C_T$) and accounting for deposition of different SS size fractions/types distribution in order to display this complicated dynamic behavior. This study explored the performance of a coupled two-dimensional (2D) hydrodynamic and particle dynamics model that simulates the fate and transport of a turbid density flow in a negatively buoyant density flow regime. Multiple groups of suspended sediment (SS), classified by the particle size and their site-specific $SS-C_T$ relationships, were used for the conversion between field measurements ($C_T$) and model state variables (SS). The 2D model showed, in overall, good performance in reproducing the reservoir thermal structure, flood propagation dynamics and the magnitude and distribution of turbidity in the stratified reservoir. Some significant errors were noticed in the transitional zone due to the inherent lateral averaging assumption of the 2D hydrodynamic model, and in the lacustrine zone possibly due to long-term decay of particulate organic matters induced during flood runoffs.

Impact assessment for water pressure and turbidity occurrence by changes in water flow rate of large consumer at water distribution networks (상수도관망에서 대수용가의 유량변화에 따른 수압 및 탁도발생 영향평가)

  • Choi, Doo Yong;Kim, Ju-Hwan;Choi, Min-Ah;Kim, Do-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.3
    • /
    • pp.277-286
    • /
    • 2014
  • Water discolouration and increased turbidity in the local water service distribution network occurred from hydraulic incidents such as drastic changes of flow and pressure at large consumer. Hydraulic incidents impose extra shear stresses on sediment layers in the network, leading to particle resuspension. Therefore, real time measuring instruments were installed for monitoring the variation of water flow, pressure, turbidity and particulates on a hydrant in front of the inlet point of large apartment complex. In this study, it is attempted to establish a more stable water supply plan and to reduce complaints from customers about water quality in a district metering area. To reduce red or black water, the water flow monitoring and control systems are desperately needed in the point of the larger consumers.

Improvement of Rectangle Sedimentation basin using the Moving Baffle (이동식 정류장치를 이용한 횡류식 침전지 침전효율 개선 연구)

  • Cho, Young-Man
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.726-731
    • /
    • 2005
  • Sedimentation is treated as the most important unit process in waterworks, and plays great role on turbidity removal efficiency. Rectangle sedimentation basin is the most widely accepted sedimentation process. But it has some problems with short-circuit flow and density flow caused by temperature and influent turbidity variation. To solve these problems, installation of rectification wall was suggested, but not generally fully accepted in field. Because hole of rectification wall cause jet flow. In this research, use of moving baffle was investigated. Moving baffle was designed to induce uniform velocity at every section of water flow. The baffle walls was made from soft fiber materials. The baffle walls with flow of sedimentation basin moves at same speed. It is like that it controls density flow and short-circuit flow and induce uniform velocity at every section of water flow in sedimentation basin. When moving baffle was operated retention time of sedimentation basin was extended to 1 hours. When it talked again and the effluent time of highest concentration of the chlorine ion from 100 minutes was extended to 160 minutes. Turbidity removal efficiency was tested with different operation modes(continuous and batch) with influent turbidity and retention time. It was revealed that turbidity removal efficiency carl be improved up to 36%(continuous mode) and 58%(batch mode) respectively. Consequently if moving baffle introduces in Rectangle sedimentation basin, it forecasts that the turbidity improvement above 30% will be possible.

Simulations of Temporal and Spatial Distributions of Rainfall-Induced Turbidity Flow in a Reservoir Using CE-QUAL-W2 (CE-QUAL-W2 모형을 이용한 저수지 탁수의 시공간분포 모의)

  • Chung, Se-Woong;Oh, Jung-Kuk;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.655-664
    • /
    • 2005
  • A real-time monitoring and modeling system (RTMMS) for rainfall-induced turbidity flow, which is one of the major obstacles for sustainable use of reservoir water resources, is under development. As a prediction model for the RTMMS, a laterally integrated two-dimensional hydrodynamic and water quality model, CE-QUAL-W2 was tested by simulating the temperature stratification, density flow regimes, and temporal and spatial distributions of turbidity in a reservoir. The inflow water temperature and turbidity measured every hour during the flood season of 2004 were used as the boundary conditions. The monitoring data showed that inflow water temperature drop by 5 to $10^{\circ}C$ during rainfall events in summer, and consequently resulted in the development of density flow regimes such as plunge flow and interflow in the reservoir. The model showed relatively satisfactory performance in replicating the water temperature profiles and turbidity distributions, although considerable discrepancies were partially detected between observed and simulated results. The model was either very efficient in computation as the CPU run time to simulate the whole flood season took only 4 minutes with a Pentium 4(CPU 2.0GHz) desktop computer, which is essentially requited for real-time modeling of turbidity plume.

The Turbidity Measured by Division Image Analysis in Flow Type Sample (분할화상분석에 의한 흐름 형태 시료의 탁도 측정)

  • Park, Jong-Ho;Park, Soo-Haeng;Ryu, Min-Su
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.681-684
    • /
    • 2009
  • The turbidity of flow type samples has a nonlinear relation to brightness of laser scattered light, but the shape of images in laser scattered light is different from each turbidity samples. The turbidity measurement will be easy if it uses a pattern of images in laser scattered light. But the excessive analysis load comes from the turbidity measured by red, green, blue intensity (intensity) of all pixels of images in laser scattered light. Therefore the images in laser scattered light were divided by appropriate block to decrease excessive analysis load. The shape of divided images in laser scattered light was different from each turbidity sample. The real turbidity has a linear relation to turbidity measured by the artificial neural network learned with the intensity of divided images in laser scattered light and turbidity.