DOI QR코드

DOI QR Code

Development of Economical Fertilizer-Based Media for Mass Culturing of Nannochloropsis oceanica

  • Bae, Jean-Hee (Department of Marine Bio-materials and Aquaculture, Pukyong National University) ;
  • Hur, Sung-Bum (Department of Marine Bio-materials and Aquaculture, Pukyong National University)
  • Received : 2011.04.20
  • Accepted : 2011.11.08
  • Published : 2011.12.31

Abstract

This study was conducted to develop economical agricultural fertilizer media for the mass culturing of Nannochloropsis oceanica. Specific growth rates of N. oceanica cultured with differing concentrations of commercial compounds, urea fertilizers, and trace elements (Zn, Cu, Co, Mo) were compared with the growth rate in f/2 medium. Among the various added trace elements, $CuSO_4{\cdot}5H_2O$ was most effective for high growth of N. oceanica. The main nitrogen source in the agricultural fertilizers was ammonium, which was unsuitable for the growth of N. oceanica. Thus, the fertilizer at a lower concentration infused with $NaNO_3$ as a nitrogen source was more effective than fertilizer at higher concentrations. In this study, the growth of N. oceanica cultured with an agricultural fertilizer medium composed of compound fertilizer (41.7 mg/L), urea fertilizer (34.4 mg/L), $NaNO_3$ (150 mg/L), and $CuSO_4{\cdot}5H_2O$ (0.0588 mg/L) was similar to that of N. oceanica cultured in f/2 medium.

Keywords

References

  1. Admiraal W. 1977. Tolerance of estuarine benthic diatoms to high concentrations of ammonia, nitrite ion, nitrate ion and orthophosphate. Mar Biol 43, 307-315. https://doi.org/10.1007/BF00396925
  2. Andrade LR, Farina M and Amado GM. 2004. Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol Environ Saf 58, 117-125. https://doi.org/10.1016/S0147-6513(03)00106-4
  3. Bae JH. 2004. Selection of seasonal optimum Chlorella and Nannochloris species and development of media for mass culture. Ph.D. Dissertation, Pukyong National University, Busan, KR.
  4. Becker EW. 1981. Algae mass cultivation: production and utilization. Process Biochem 16, 10-14.
  5. Borowitzka MA. 1997. Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9, 393-401. https://doi.org/10.1023/A:1007921728300
  6. Borowitzka MA and Borowitzka LJ. 1988. Micro-algal Biotechnology. Cambridge University Press, New York, US.
  7. Brown MR, Jeffrey SW, Volkman JK and Dunstan GA. 1997. Nutritional properties of microalgae for mariculture. Aquaculture 151, 315-331. https://doi.org/10.1016/S0044-8486(96)01501-3
  8. Cabrera T and Hur SB. 2001. The nutritional value of live foods on the larval growth and survival of Japanese flounder, Paralichthys olivaceus. J Appl Aquc 11, 35-53.
  9. Cabrera T, Bae JH, Bai SC and Hur SB. 2005. Effects of microalgae and salinity on the growth three types of the rotifer Brachionus plicatilis. J Fish Sci Technol 8, 70-75.
  10. Cha SH, Kim MJ, Yang HY, Jin CB, Jeon YJ, Oda T and Kim D. 2010. ACE, $\alpha$-glucosidase and cancer cell growth inhibitory activities of extracts and fractions from marine microalgae, Nannochloropsis oculata. Korean J Fish Aquat Sci 43, 437-444. https://doi.org/10.5657/kfas.2010.43.5.437
  11. Chisti Y. 2007. Biodiesel from microalgae. Biotechnol Adv 25, 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  12. Duncan DB. 1955. Multiple range and multiple F tests. Biometrics 11, 1-42. https://doi.org/10.2307/3001478
  13. Fabregas J, Herrero C, Cabezas B and Abalde J. 1985. Mass culture and biochemical variability of the marine microalgae Tetraselmis suecica Kylin (Butch) with high nutrient concentrations. Aquaculture 49, 231-244. https://doi.org/10.1016/0044-8486(85)90082-1
  14. Fabregas J, Toribio L, Abalde J, Cabezas B and Herrero C. 1987. Approach to biomass production of the marine microalga Tetraselmis suecica (Kylin) butch using common garden fertilizer and soil extract as cheap nutrient supply in batch cultures. Aquac Eng 6, 141-150. https://doi.org/10.1016/0144-8609(87)90011-2
  15. Ferreira M, Coutinho P, Seixas P, Fabregas J and Otero A. 2009. Enriching rotifers with "premium" microalgae. Nannochloropsis gatosynthesis ditana. Mar Biotechnol 11, 585-595. https://doi.org/10.1007/s10126-008-9174-x
  16. Gonzalez-Rodriguez E and Maestrini SY. 1984. The use of some agricultural fertilizers for the mass production of marine algae. Aquaculture 36, 245-256. https://doi.org/10.1016/0044-8486(84)90240-0
  17. Guillard RRL 1973. Division rates. In: Handbook of Phycological Methods. Culture Method and Growth Measurement. Stein JR, ed. Cambridge University Press, Cambridge, GB, pp. 289-311.
  18. Guillard RRL and Ryther JH. 1962. Studies of marine plankton diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8, 229-239. https://doi.org/10.1139/m62-029
  19. Harting P, Grobbelaar JU, Soeder CJ and Groeneweg J. 1988. On the mass culture of microalgae: a real density as an important factor for achieving maximal productivity. Biomass 15, 211-221. https://doi.org/10.1016/0144-4565(88)90057-1
  20. Hu H and Gao K. 2003. Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnol Lett 25, 421-425. https://doi.org/10.1023/A:1022489108980
  21. Kalpan D, Richmond AE, Dubinsky Z and Aaronson S. 1986. Algal nutrition. In: Handbook of Microalgal Mass Culture. Richmond A, ed. CRC Press, Boca Raton, FL, US, pp. 147-197.
  22. Kobayashi T, Nagase T, Kurano N and Hino A. 2005. Fatty acid composition of the L-type rotifer Brachionus plicatilis produced by a continuous culture system under the provision of high density Nannochloropsis. Nippon Suisan Gakkaishi 71, 328-334. https://doi.org/10.2331/suisan.71.328
  23. Lopez-Ruiz JL, Garcia-Garcia RG, Soledad M and Almeda F. 1995. Marine microalgae culture: Chaetoceros gracilis with zeolitic product Zestec-56 and a commercial fertilizer as a nutrient. Aqauc Eng 14, 367-372. https://doi.org/10.1016/0144-8609(94)00011-O
  24. Lubian LM, Montero O, Moreno-Garrido I, Huertas IE, Sobrino C, Gonzalez-del Valle M and Pares G. 2000. Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J Appl Phycol 12, 249-255. https://doi.org/10.1023/A:1008170915932
  25. Okauchi M, Yamada T and Ozaki A. 2008. Optimum media for outdoor large-scale and indoor small-scale batch style culture of Nannochloropsis oculata. Aquac Sci 56, 147-155.
  26. Pacheco-Vega JM and Sanchez-Saavedra MDP. 2009. The biochemical composition of Chaetoceros muelleri (Lemmermann Grown) with an agricultural fertilizer. J World Aquac Soc 40, 556-560. https://doi.org/10.1111/j.1749-7345.2009.00276.x
  27. Patil V, Kallqvist T, Olsen E, Vogt G and Gislerød HR. 2007. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacult Int 15, 1-9. https://doi.org/10.1007/s10499-006-9060-3
  28. Schreiber E. 1927. Die Reinkultir von marinem phytoplankton und deren bedeutung für die erforschung der produktionsfahigkeit des meerwassers. Wiss Meersuntersuch NF 16, 1-34.
  29. Seychelles LH, Audet C, Tremblay R, Fournier R and Pernet F. 2009. Essential fatty acid enrichment of cultured rotifers (Brachionus plicatilis, Muller) using frozen-concentrated microalgae. Aqauc Nutr 15, 431-439. https://doi.org/10.1111/j.1365-2095.2008.00608.x
  30. Stein JR. 1973. Handbook of Phycological Methods: Culture Methods and Growth Measurement. Cambridge University Press, Cambridge, GB.
  31. Sukenik A, Zmora O and Carmeli Y. 1993. Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture 117, 313-326. https://doi.org/10.1016/0044-8486(93)90328-V
  32. Ukeles R. 1980. American experience in the mass culture of microalgae for feeding larvae of the American oyster, Crassostrea virginica. In: Algae Biomass: Production and Use. Shelef G and Soeder CJ, eds. Elsevier/North Holland Biomedical Press, Amsterdam, NL, pp. 287-306.
  33. Valenzuela-Espinoza E, Millan-Nunez R and Nunez-Cebrero F. 2002. Protein, carbohydrate, lipid and chlorophyll a content in Isochrysis aff. galbana (clone T-Iso) cultured with a low cost alternative to the f/2 medium. Aquac Eng 25, 207-216. https://doi.org/10.1016/S0144-8609(01)00084-X
  34. Volkman JK, Brown MR, Dunstan GA and Jeffrey SW. 1993. The biochemical composition of marine microalgal from the class Eustigmatophyceae. J Phycol 29, 69-78. https://doi.org/10.1111/j.1529-8817.1993.tb00281.x
  35. Walne PR. 1966. Experiments in the large-scale culture of the larvae of Ostrea edulis L. Fish Invest London Ser II 25, 1-53.
  36. Zittelli GC, Lavista F, Bastianini A, Rodolfi L, Vincenzini M and Tredici MR. 1999. Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70, 299-312. https://doi.org/10.1016/S0168-1656(99)00082-6