DOI QR코드

DOI QR Code

Sphingobacterium sp. SW-09에 의한 토양환경에서의 다환 방향족탄화수소인 페난스렌의 분해

Sphingobacterium sp. SW-09 Effectively Degrades Phenanthrene, a Polycyclic Aromatic Hydrocarbon, in a Soil Microcosm

  • Son, Seung-Woo (Suzhou Singapore International School) ;
  • Chang, Hey-Won (Dongducheon Forgein Language High School) ;
  • Kim, Sung-Kuk (Department of Life Science, College of Natural Science, Daejin University) ;
  • Chang, Jong-Soo (Department of Life Science, College of Natural Science, Daejin University)
  • 투고 : 2011.09.22
  • 심사 : 2011.11.16
  • 발행 : 2011.11.30

초록

페난스렌은 다환방향족 탄화수소의 일종으로서 미량으로도 인체에 강한 해를 미칠 수 있는 주요 환경오염 물질이다. 미생물을 이용한 페난스렌 제거 목적으로 중국 쑤저우(Suzhou) 지역의 유류 오염토양에서 페난스렌을 강력하게 분해하는 세균을 분리하였다. 16S rDNA 염기서열 결정에 의하여 이 세균은 Sphingobacterium sp. SW-09로 동정되었으며 PCR 증폭을 통하여 페난스렌 분해 유전자인 nahH를 가지고 있음이 확인되었다. 이전의 연구에서 포천일대의 군부대에서 분리된 강력한 페난스렌 분해세균인 Staphylococcus sp. KW-07과 이번에 분리된 Sphingobacterium sp. SW-09을 이용하여 이들의 페난스렌 분해능을 비교분석하였다. 그 결과, 쑤저우 지역에서 분리된 Sphingobacterium sp. SW-09이 최소배지와 실제토양에서 모두 Staphylococcus sp. KW-07보다 강하게 페난스렌을 분해하는 것으로 나타났다. 결과적으로 이번에 분리된 Sphingobacterium sp. SW-09을 사용하여 유류 오염토양의 환경정화에 사용할 수 있을 것으로 판단된다.

We isolated a potent phenanthrene-degrading bacterium from oil-contaminated soils of Suzhou, China, and assessed the potential use of these bacteria for bioremediation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs) in a microcosm. Based on 16S rDNA sequencing, we identified this bacteria as Sphigobacterium sp. SW-09. By PCR amplification, we also identified catechol 2,3-dioxygenase genes (nahH genes) mediating PAH degradation. Staphylococcus sp. KW-07, which has been identified in our previous study, showed potential for use in bioremediation of oil-contaminated soils. In this experiment, we compared the rate of phenanthrene-degradation between Staphylococcus sp. KW-07 and Sphingobacterium sp. SW-09 in a microcosm condition. Newly isolated Sphingobacterium sp. SW-09 showed a higher phenanthrene-degradation rate than that of Staphylococcus sp. KW-07 in soil microcosms. Together, our results suggest that the Sphingobacterim sp. SW-09 strain isolated from the Suzhou area may also be useful in bioremediation of PAH-contaminated soils.

키워드

참고문헌

  1. Blumer, M. 1976. Polycyclic aromatic compounds in nature. Scientific American 234, 35-45.
  2. Boonchan, S., M. L. Britz, and G. A. Stanley. 2000. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl. Environ. Microbiol. 66, 1007-1019. https://doi.org/10.1128/AEM.66.3.1007-1019.2000
  3. Bouchez, M., D. Blanchet, and J. P. Vandecasteele. 1995. Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Appl. Microbiol. Biotechnol. 43, 156-164. https://doi.org/10.1007/BF00170638
  4. Chang, C. H., J. Y. Lee, B. G. Ko, S. K. Kim, and J. S. Chang. 2011. Staphylococcus sp. KW-07 contains nahH gene encoding catechol 2,3-dioxygenase for phenanthrene degradation and a test in soil microcosm. Int. Biodeterior. Biodegradation 65, 198-203. https://doi.org/10.1016/j.ibiod.2010.11.003
  5. Evans, W. C., H. N. Fernley, and E. Griffiths. 1965. Oxidative metabolism of phenanthrene and anthracene by soil Pseudomonas. The ring-fission mechanism. Biochem. J. 95, 819-831.
  6. Hanzalova, K., P. Rossner Jr, and R. J. Sram. 2010. Oxidative damage induced by carcinogenic polycyclic aromatic hydrocarbons and organic extracts from urban air particulate matter. Mutat. Res. 696, 114-121. https://doi.org/10.1016/j.mrgentox.2009.12.018
  7. Harayama, S. 1997. Polycyclic aromatic hydrocarbon bioremediation design. Curr. Opin. Biotechnol. 8, 268-273. https://doi.org/10.1016/S0958-1669(97)80002-X
  8. Kiyohara, H., S. Torigoe, N. Kaida, T. Asaki, T. Iida, H. Hayashi, and N. Takizawa. 1994. Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J. Bacteriol. 176, 2439-2443.
  9. Lu, X. Y., T. Zhang, and H. H. Fang. 2011. Bacteria-mediated PAH degradation in soil and sediment. Appl. Microbiol. Biotechnol. 89, 1357-1371. https://doi.org/10.1007/s00253-010-3072-7
  10. Macgillivray, A. R. and M. P. Shiaris. 1994. Relative role of eukaryotic and prokaryotic microorganisms in phenanthrene transformation in coastal sediments. Appl. Environ. Microbiol. 60, 1154-1159.
  11. Maillacheruvu, K. Y. and I. A. Pathan. 2009. Biodegradation of naphthalene, phenanthrene, and pyrene under anaerobic conditions. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 44, 1315-1326. https://doi.org/10.1080/10934520903212956
  12. Mallick ,S., S. Chatterjee, and T. K. Dutta. 2007. A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy- 1-naphthoic acid: formation of trans-2,3-dioxo- 5-(2'-hydroxyphenyl)-pent-4-enoic acid. Microbiol. 153, 2104-2115. https://doi.org/10.1099/mic.0.2006/004218-0
  13. Marston, C. P., C. Pereira, J. Ferguson, K. Fischer, O. Hedstrom, W. M. Dashwood, and W. M. Baird. 2001. Effect of a complex environmental mixture from coal tar containing polycyclic aromatic hydrocarbons (PAH) on the tumor initiation, PAH-DNA binding and metabolic activation of carcinogenic PAH in mouse epidermis. Carcinogenesis 22, 1077-1086. https://doi.org/10.1093/carcin/22.7.1077
  14. Nazaret, S., B. Cournoyer, P. Normand, and P. Simonet. 1991. Phylogenetic relationships among Frankia genomic species determined by use of amplified 16S rDNA sequences. J. Bacteriol. 173, 4072-4078.
  15. Puntus, I. F., A. E. Filonov, L. I. Akhmetov, A. V. Karpov, and A. M. Boronin. 2008. Phenanthrene degradation by bacteria of the genera Pseudomonas and Burkholderia in model soil systems. Mikrobiologiia 77, 11-20.
  16. Saito, A., T. Iwabuchi, and S. Harayama. 1999. Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7. Chemosphere. 38, 1331-1337. https://doi.org/10.1016/S0045-6535(98)00534-7
  17. Shuttleworth, K. L. and C. E. Cerniglia. 1995. Environmental aspects of PAH biodegradation. Appl. Biochem. Biotechnol. 54, 291-302. https://doi.org/10.1007/BF02787927
  18. Taguchi, K., M. Motoyama, T. Iida, and T. Kudo. 2007. Polychlorinated biphenyl/biphenyl degrading gene clusters in Rhodococcus sp. K37, HA99, and TA431 are different from well-known bph gene clusters of Rhodococci. Biosci. Biotechnol. Biochem. 71, 1136-1144. https://doi.org/10.1271/bbb.60551
  19. US-EPA. Test methods for Evaluanting Solid wastes, 1998. Physica/Chemical Methods (SW-846) on CD-RON, No.8310, U.S. National Technical Information Service, VA., USA, 200-230.
  20. Van Herwijnen, R., P. Wattiau, L. Bastiaens, L. Daal, L. Jonker, D. Springael, H. A. Govers, and J. R. Parsons. 2003. Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126. Res. Microbiol. 154, 199-206. https://doi.org/10.1016/S0923-2508(03)00039-1
  21. Vinas, M., J. Sabate, M. J. Espuny, and A. M. Solanas. 2005. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl. Environ. Microbiol. 71, 7008-7018. https://doi.org/10.1128/AEM.71.11.7008-7018.2005
  22. Yu, Y., T. He, M. Zhong, Y. Zhang, E. Li, T. Huang, and Z. Hu. 2009. Isolation of marine benzo[a]pyrene-degrading Ochrobactrum sp. BAP5 and proteins characterization. J. Environ. Sci. 21, 1446-1451. https://doi.org/10.1016/S1001-0742(08)62438-9
  23. Zhang, H., A. Kallimanis, A. I. Koukkou, and C. Drainas. 2004. Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl. Microbiol. Biotechnol. 65, 124-131.

피인용 문헌

  1. From oil spills to barley growth - oil-degrading soil bacteria and their promoting effects vol.56, pp.11, 2016, https://doi.org/10.1002/jobm.201600300