DOI QR코드

DOI QR Code

Hematologic Characteristics of Intrauterine Growth Restricted Small for Gestational Age Infants

자궁 내 성장지연으로 인한 부당 경량아의 혈액학적 특징

  • Kim, Soon-Ju (Department of Pediatrics, College of Medicine, The Catholic University of Korea) ;
  • Cho, Il-Hyun (Department of Pediatrics, College of Medicine, The Catholic University of Korea) ;
  • Cho, Yeon-Soo (Department of Pediatrics, College of Medicine, The Catholic University of Korea) ;
  • Youn, Young-Ah (Department of Pediatrics, College of Medicine, The Catholic University of Korea) ;
  • Lee, Ju-Young (Department of Pediatrics, College of Medicine, The Catholic University of Korea) ;
  • Lee, Hyun-Seung (Department of Pediatrics, College of Medicine, The Catholic University of Korea) ;
  • Lee, Jung-Hyun (Department of Pediatrics, College of Medicine, The Catholic University of Korea) ;
  • Sung, In-Kyung (Department of Pediatrics, College of Medicine, The Catholic University of Korea) ;
  • Kim, So-Young (Department of Pediatrics, College of Medicine, The Catholic University of Korea)
  • 김순주 (가톨릭대학교 의과대학 소아청소년과학교실) ;
  • 조일현 (가톨릭대학교 의과대학 소아청소년과학교실) ;
  • 조연수 (가톨릭대학교 의과대학 소아청소년과학교실) ;
  • 윤영아 (가톨릭대학교 의과대학 소아청소년과학교실) ;
  • 이주영 (가톨릭대학교 의과대학 소아청소년과학교실) ;
  • 이현승 (가톨릭대학교 의과대학 소아청소년과학교실) ;
  • 이정현 (가톨릭대학교 의과대학 소아청소년과학교실) ;
  • 성인경 (가톨릭대학교 의과대학 소아청소년과학교실) ;
  • 김소영 (가톨릭대학교 의과대학 소아청소년과학교실)
  • Published : 2011.11.30

Abstract

Purpose: Intrauterine growth retardation (IUGR) is the term used to designate a fetus that has not reached its growth potential. However it is difficult to make a distinction between infants who are constitutionally small and growth restricted small. In the present study, we focused on the clinical characteristics and the hematologic value in small for gestational age (SGA) infants and discussed how to distinguish intrauterine growth restricted infants from constitutionally small infants. Methods: SGA infants that did not have any other risk factors for IUGR in the medical record except maternal hypertension (HTN) and diabetes mellitus (DM) and born at the Seoul St Mary's Hospital and Yeouido St Mary`s Hospital from January 2007 to July 2010 were included. The frequency of IUGR is higher in the pregnancy with medical problem, and in preterm infants. Therefore, the data was categorized by maternal disease and gestational age. We assessed the clinical data and the hematologic value. Results: The leukocyte count and the platelet count were lower in the SGA with maternal HTN group and the preterm SGA group. There was no difference in the clinical data and the prognosis resulted from maternal HTN and maternal DM. However, the hematologic difference was not found in the categorization of the preterm SGA group as maternal diasease. Conclusion: The results of this study showed that it is possible the low leukocyte count and the low platelet count are the characteristic hematologic features in growth restricted small for gestational age infants.

목적: 부당 경량아와 자궁 내 성장 지연을 혼동하여 사용하고 있다. 실제 부당 경량아 중 약 70% 정도는 기질적으로 작게 태어난 경우로 자궁 내 성장 지연으로 인한 부당 경량아에 비해 주산기 합병증의 위험이 거의 없다. 그러나 자궁 내 성장 지연으로 인한 부당 경량아를 구별할 수 있는 뚜렷한 방법은 아직 없다. 저자들은 자궁 내 성장 지연의 위험 인자 중 모체의 고혈압, 당뇨병에 초점을 맞춰 고혈압 및 당뇨병 산모의 부당 경량아와 자궁내 성장 지연의 위험 요인을 발견할 수 없었던 부당 경량아를 대상으로 모체의 질환에 따른 임상적 특징과 혈액학적 특징을 비교해 보고 부당 경량아의 출생 시 자궁 내 성장 지연의 정도 및 예후를 예측하는 데 도움이 되고자 본 연구를 계획하였다. 방법: 2007년 1월부터 2010년 7월까지 가톨릭대학교 서울성모병원과 여의도 성모병원에서 출생한 부당 경량아 중 모체의 고혈압, 당뇨 이외의 자궁 내 성장 지연의 위험 인자를 가진 환아를 모두 제외한 163명을 대상으로 의무 기록을 후향적으로 분석하여 임상적 소견, 혈액학적 소견을 기록하였다. 대상군을 모체의 질환에 따라, 재태 연령에 따라, 재태 연령과 모체의 질환을 함께 고려하여 세가지 방법으로 분류하여 비교하였다. 결과: 모체의 질환별로 전체 부당 경량아를 분류하였을 때 예후, 임상적 특징은 큰 차이가 없었으나 고혈압 산모에서 출생한 부당 경량아에서 백혈구와 혈소판이 유의하게 낮았으며 (P=0.004, P=0.003) 혈소판 수치는 재원 기간과 관련성이 있었다. 미숙아 부당 경량아와 만삭아 부당 경량아를 재태 연령과 출생 체중을 보정하여 비교하였을 때에도 미숙아 부당 경량아에서 백혈구와 혈소판이 유의하게 낮았다(P <0.001, P <0.001). 그러나 미숙아 부당 경량아를 모체의 질환에 따라 비교하였을 때에는 이러한 차이가 나타나지 않았다. 결론: 백혈구와 혈소판 수의 감소와 자궁 내 성장 지연의 발생과 관련이 있는 것으로 보인다. 자궁 내 성장 지연아의 이학적 소견과 이러한 혈액학적 특징을 함께 고려한다면 자궁 내 성장 지연을 진단하는 데에 도움이 될 것으로 생각된다.

Keywords

References

  1. Battaglia FC, Lubchenco LO. A practical classification of newborn infants by weight and gestational age. J Pediatr 1967;71:159-63. https://doi.org/10.1016/S0022-3476(67)80066-0
  2. McCowan LM, Pryor J, Harding JE. Perinatal predictors of neurodevelopmental outcome in small-for-gestational-age children at 18 months of age. Am J Obstet Gynecol 2002;186:1069-75. https://doi.org/10.1067/mob.2002.122292
  3. McIntire DD, Bloom SL, Casey BM, Leveno KJ. Birth weight in relation to morbidity and mortality among newborn infants. N Engl J Med 1999;340:1234-8. https://doi.org/10.1056/NEJM199904223401603
  4. Manning FA. Intrauterine growth retardation. In: Manning FA, editor. Fetal medicine: principle and practice. Norwalk CT: Appleton and Lange, 1995:317.
  5. Berghella V. Prevention of recurrent fetal growth restriction. Obstet Gynecol 2007;110:904-12. https://doi.org/10.1097/01.AOG.0000267203.55718.aa
  6. Gross SJ. Intrauterine growth restriction: a genetic perspective. Clin Obstet Gynecol 1997;40:730-9. https://doi.org/10.1097/00003081-199712000-00007
  7. Redline RW. Placental pathology: a systematic approach with clinical correlations. Placenta 2008;29 Suppl A:S86-91.
  8. von Dadelszen P, Ornstein MP, Bull SB, Logan AG, Koren G, Magee LA. Fall in mean arterial pressure and fetal growth restriction in pregnancy hypertension: a meta-analysis. Lancet 2000;355:87-92. https://doi.org/10.1016/S0140-6736(98)08049-0
  9. Correa RR, Gilio DB, Cavellani CL, Paschoini MC, Oliveira FA, Peres LC, et al. Placental morphometrical and histopathology changes in the different clinical presentations of hypertensive syndromes in pregnancy. Arch Gynecol Obstet 2008;277:201-6. https://doi.org/10.1007/s00404-007-0452-z
  10. Philips AF, Dubin JW, Matty PJ, Raye JR. Arterial hypoxemia and hyperinsulinemia in the chronically hyperglycemic fetal lamb. Pediatr Res 1982;16:653-8. https://doi.org/10.1203/00006450-198208000-00013
  11. Widness JA, Teramo KA, Clemons GK, Garcia JF, Cavalieri RL, Piasecki GJ, et al. Temporal response of immunoreactive erythropoietin to acute hypoxemia in fetal sheep. Pediatr Res 1986;20:15-9. https://doi.org/10.1203/00006450-198601000-00004
  12. Lubchenco LO, Hansman C, Boyd E. Intrauterine growth in length and head circumference as estimated from live births at gestational ages from 26 to 42 weeks. Pediatrics 1966;37:403-8.
  13. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2011;34 Suppl 1:S62-9.
  14. Seeds JW, Peng T. Impaired growth and risk of fetal death: is the tenth percentile the appropriate standard? Am J Obstet Gynecol 1998;178:658-69. https://doi.org/10.1016/S0002-9378(98)70475-2
  15. Rodriguez G, Collado MP, Samper MP, Biosca M, Bueno O, Valle S, et al. Subcutaneous fat distribution in small for gestational age newborns. J Perinat Med 2011;39:355-7.
  16. Minior VK, Shatzkin E, Divon MY. Nucleated red blood cell count in the differentiation of fetuses with pathologic growth restriction from healthy small-for-gestational-age fetuses. Am J Obstet Gynecol 2000;182:1107-9. https://doi.org/10.1067/mob.2000.105444
  17. Cetin I, Alvino G. Intrauterine growth restriction: implications for placental metabolism and transport. A review. Placenta 2009;30 Suppl A:S77-82.
  18. Mayhew TM, Ohadike C, Baker PN, Crocker IP, Mitchell C, Ong SS. Stereological investigation of placental morphology in pregnancies complicated by pre-eclampsia with and without intrauterine growth restriction. Placenta 2003;24:219-26. https://doi.org/10.1053/plac.2002.0900
  19. Nishizawa H, Ota S, Suzuki M, Kato T, Sekiya T, Kurahashi H, et al. Comparative gene expression profiling of placentas from patients with severe pre-eclampsia and unexplained fetal growth restriction. Reprod Biol Endocrinol 2011;9:107. https://doi.org/10.1186/1477-7827-9-107
  20. McCarthy C, Cotter FE, McElwaine S, Twomey A, Mooney EE, Ryan F, et al. Altered gene expression patterns in intrauterine growth restriction: potential role of hypoxia. Am J Obstet Gynecol 2007; 196:70.
  21. Okamoto A, Endo H, Kalionis B, Shinya M, Saito M, Nikaido T, et al. IGFBP1 and Follistatin-like 3 genes are significantly up-regulated in expression profiles of the IUGR placenta. Placenta 2006;27:317- 21. https://doi.org/10.1016/j.placenta.2004.12.007
  22. Roh CR, Budhraja V, Kim HS, Nelson DM, Sadovsky Y. Microarray-based identification of differentially expressed genes in hypoxic term human trophoblasts and in placental villi of pregnancies with growth restricted fetuses. Placenta 2005;26:319-28. https://doi.org/10.1016/j.placenta.2004.06.013
  23. Struwe E, Berzl G, Schild R, Blessing H, Drexel L, Hauck B, et al. Microarray analysis of placental tissue in intrauterine growth restriction. Clin Endocrinol (Oxf) 2010;72:241-7. https://doi.org/10.1111/j.1365-2265.2009.03659.x
  24. Tzschoppe AA, Struwe E, Dörr HG, Goecke TW, Beckmann MW, Schild RL, et al. Differences in gene expression dependent on sampling site in placental tissue of fetuses with intrauterine growth restriction. Placenta 2010;31:178-85. https://doi.org/10.1016/j.placenta.2009.12.002
  25. Wyatt SM, Kraus FT, Roh CR, Elchalal U, Nelson DM, Sadovsky Y. The correlation between sampling site and gene expression in the term human placenta. Placenta 2005;26:372-9. https://doi.org/10.1016/j.placenta.2004.07.003
  26. Kaufmann P, Black S, Huppertz B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod 2003;69:1-7. https://doi.org/10.1095/biolreprod.102.014977
  27. Villar J, Carroli G, Wojdyla D, Abalos E, Giordano D, Ba'aqeel H, et al. Preeclampsia, gestational hypertension and intrauterine growth restriction, related or independent conditions? Am J Obstet Gynecol 2006;194:921-31. https://doi.org/10.1016/j.ajog.2005.10.813
  28. Maruyama H, Shinozuka M, Kondoh Y, Akahori Y, Matsuda M, Inoue S, et al. Thrombocytopenia in preterm infants with intrauterine growth restriction. Acta Med Okayama 2008;62:313-7.
  29. Wirbelauer J, Thomas W, Rieger L, Speer CP. Intrauterine growth retardation in preterm infants ${\leq}$32 weeks of gestation is associated with low white blood cell counts. Am J Perinatol 2010;27:819-24. https://doi.org/10.1055/s-0030-1254547
  30. Zook KJ, Mackley AB, Kern J, Paul DA. Hematologic effects of placental pathology on very low birthweight infants born to mothers with preeclampsia. J Perinatol 2009;29:8-12. https://doi.org/10.1038/jp.2008.104