DOI QR코드

DOI QR Code

Vascular Aspects of Bronchopulmonary Dysplasia

기관지폐형성이상의 혈관적 측면

  • Cho, Su-Jin (Department of Pediatrics, Ewha Womans University School of Medicine)
  • 조수진 (이화여자대학교 의학전문대학원 소아청소년과학교실괃)
  • Published : 2011.11.30

Abstract

Bronchopulmonary dysplasia (BPD) is characterized by arrest of vascular and alveolar development in premature infants. Recent advances in neonatology have increased the survival of immature babies. Consequently, the prevalence of BPD is increasing. Animal studies and autopsy findings of BPD have demonstrated interruption in vascular development and reversal of lung injury through promotion of vasculogenesis. Normal lung development is driven by temporal and spatial specific growth factors and cellto-cell signaling in vascular development. Lung injury through various pathways causes disruption in this complex interactive process and results in aberrant vascular development and subsequent BPD. By understanding the regulation of vascular growth of the lung, it would be possible to find new targets in the treatment and prevention of BPD in premature infants.

Keywords

References

  1. Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med 1967;276:357-68. https://doi.org/10.1056/NEJM196702162760701
  2. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001;163:1723-9. https://doi.org/10.1164/ajrccm.163.7.2011060
  3. Coalson JJ. Pathology of bronchopulmonary dysplasia. Semin Perinatol 2006;30:179-84. https://doi.org/10.1053/j.semperi.2006.05.004
  4. Walter EC, Ehlenbach WJ, Hotchkin DL, Chien JW, Koepsell TD. Low birth weight and respiratory disease in adulthood: a populationbased case-control study. Am J Respir Crit Care Med 2009;180:176- 80. https://doi.org/10.1164/rccm.200901-0046OC
  5. Doyle LW, Faber B, Callanan C, Freezer N, Ford GW, Davis NM. Bronchopulmonary dysplasia in very low birth weight subjects and lung function in late adolescence. Pediatrics 2006;118:108-13. https://doi.org/10.1542/peds.2005-2522
  6. Doyle LW, Anderson PJ. Adult outcome of extremely preterm infants. Pediatrics 2010;126:342-51. https://doi.org/10.1542/peds.2010-0710
  7. Speer CP. Chorioamnionitis, postnatal factors and proinflammatory response in the pathogenetic sequence of bronchopulmonary dysplasia. Neonatology 2009;95:353-61. https://doi.org/10.1159/000209301
  8. Choi CW, Kim BI, Hong JS, Kim EK, Kim HS, Choi JH. Bronchopulmonary dysplasia in a rat model induced by intra-amniotic inflammation and postnatal hyperoxia: morphometric aspects. Pediatr Res 2009;65:323-7. https://doi.org/10.1203/PDR.0b013e318193f165
  9. Stenmark KR, Abman SH. Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu Rev Physiol 2005;67:623-61. https://doi.org/10.1146/annurev.physiol.67.040403.102229
  10. Parera MC, van Dooren M, van Kempen M, de Krijger R, Grosveld F, Tibboel D, et al. Distal angiogenesis: a new concept for lung vascular morphogenesis. Am J Physiol Lung Cell Mol Physiol 2005;288: L141-9.
  11. Filipovic N, Tsuda A, Lee GS, Miele LF, Lin M, Konerding MA, et al. Computational flow dynamics in a geometric model of intussusceptive angiogenesis. Microvasc Res 2009;78:286-93. https://doi.org/10.1016/j.mvr.2009.08.004
  12. Galambos C, deMello DE. Molecular mechanisms of pulmonary vascular development. Pediatr Dev Pathol 2007;10:1-17. https://doi.org/10.2350/06-06-0122.1
  13. Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001;164:1971-80. https://doi.org/10.1164/ajrccm.164.10.2101140
  14. Quintos-Alagheband ML, White CW, Schwarz MA. Potential role for antiangiogenic proteins in the evolution of bronchopulmonary dysplasia. Antioxid Redox Signal 2004;6:137-45. https://doi.org/10.1089/152308604771978444
  15. Schwarz M, Lee M, Zhang F, Zhao J, Jin Y, Smith S, et al. EMAP II: a modulator of neovascularization in the developing lung. Am J Physiol 1999;276:L365-75.
  16. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000;408:92-6. https://doi.org/10.1038/35040568
  17. Voelkel NF, Vandivier RW, Tuder RM. Vascular endothelial growth factor in the lung. Am J Physiol Lung Cell Mol Physiol 2006;290: L209-21.
  18. Acarregui MJ, Penisten ST, Goss KL, Ramirez K, Snyder JM. Vascular endothelial growth factor gene expression in human fetal lung in vitro. Am J Respir Cell Mol Biol 1999;20:14-23. https://doi.org/10.1165/ajrcmb.20.1.3251
  19. Thebaud B, Ladha F, Michelakis ED, Sawicka M, Thurston G, Eaton F, et al. Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation 2005;112:2477-86. https://doi.org/10.1161/CIRCULATIONAHA.105.541524
  20. Lassus P, Ristimaki A, Ylikorkala O, Viinikka L, Andersson S. Vascular endothelial growth factor in human preterm lung. Am J Respir Crit Care Med 1999;159:1429-33. https://doi.org/10.1164/ajrccm.159.5.9806073
  21. Cho SJ, George CL, Snyder JM, Acarregui MJ. Retinoic acid and erythropoietin maintain alveolar development in mice treated with an angiogenesis inhibitor. Am J Respir Cell Mol Biol 2005;33:622-8. https://doi.org/10.1165/rcmb.2005-0050OC
  22. Jakkula M, Le Cras TD, Gebb S, Hirth KP, Tuder RM, Voelkel NF, et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol 2000;279: L600-7.
  23. Le Cras TD, Markham NE, Tuder RM, Voelkel NF, Abman SH. Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am J Physiol Lung Cell Mol Physiol 2002;283:L555-62.
  24. Lassus P, Turanlahti M, Heikkila P, Andersson LC, Nupponen I, Sarnesto A, et al. Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am J Respir Crit Care Med 2001;164:1981-7. https://doi.org/10.1164/ajrccm.164.10.2012036
  25. Compernolle V, Brusselmans K, Acker T, Hoet P, Tjwa M, Beck H, et al. Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 2002;8:702-10.
  26. Zeng X, Wert SE, Federici R, Peters KG, Whitsett JA. VEGF enhances pulmonary vasculogenesis and disrupts lung morphogenesis in vivo. Dev Dyn 1998;211:215-27. https://doi.org/10.1002/(SICI)1097-0177(199803)211:3<215::AID-AJA3>3.0.CO;2-K
  27. Kroll J, Waltenberger J. A novel function of VEGF receptor-2 (KDR): rapid release of nitric oxide in response to VEGF-A stimulation in endothelial cells. Biochem Biophys Res Commun 1999; 265:636-9. https://doi.org/10.1006/bbrc.1999.1729
  28. Lin YJ, Markham NE, Balasubramaniam V, Tang JR, Maxey A, Kinsella JP, et al. Inhaled nitric oxide enhances distal lung growth after exposure to hyperoxia in neonatal rats. Pediatr Res 2005;58:22-9. https://doi.org/10.1203/01.PDR.0000163378.94837.3E
  29. Donohue PK, Gilmore MM, Cristofalo E, Wilson RF, Weiner JZ, Lau BD, et al. Inhaled nitric oxide in preterm infants: a systematic review. Pediatrics 2011;127:e414-22. https://doi.org/10.1542/peds.2010-3428
  30. Mercier JC, Hummler H, Durrmeyer X, Sanchez-Luna M, Carnielli V, Field D, et al. Inhaled nitric oxide for prevention of bronchopulmonary dysplasia in premature babies (EUNO): a randomised controlled trial. Lancet 2010;376:346-54. https://doi.org/10.1016/S0140-6736(10)60664-2
  31. Asikainen TM, Waleh NS, Schneider BK, Clyman RI, White CW. Enhancement of angiogenic effectors through hypoxia-inducible factor in preterm primate lung in vivo. Am J Physiol Lung Cell Mol Physiol 2006;291:L588-95. https://doi.org/10.1152/ajplung.00098.2006

Cited by

  1. Risk Factors of Pulmonary Hypertension in Preterm Infants with Chronic Lung Disease vol.20, pp.1, 2011, https://doi.org/10.5385/nm.2013.20.1.75
  2. Association of Interleukin-1α-889, β-31, β-511 Polymorphism with Risk of Bronchopulmonary Dysplasia vol.20, pp.4, 2013, https://doi.org/10.5385/nm.2013.20.4.413