DOI QR코드

DOI QR Code

Alveolar Aspect of Bronchopulmonary Dysplasia

기관지폐형성이상의 폐포화 측면

  • Choi, Chang-Won (Department of Pediatrics, Seoul National University College of Medicine, Department of Pediatrics, Seoul National University Bundang Hospital)
  • 최창원 (서울대학교 의과대학 소아청소년과학교실, 분당서울대학교병원 소아청소년과)
  • Published : 2011.11.30

Abstract

The pathologic hallmark of new bronchopulmonary dysplasia (BPD) is an arrest in alveolarization and vascular development. Alveoli are the fully mature gas-exchange units and alveolarization denotes the process through which the developing lung attains its fully mature structure. In human, alveolarization is mainly a postnatal event and begins in utero around 35 postmenstrual weeks and continues to 2 postnatal years. Beginning of respiration with very immature lungs as a result of preterm delivery renders the immature lung to be exposed to various injuries such as mechanical stretch, hyperoxia, infection/inflammation and leads to a disruption of normal alveolarization process, which is a main pathologic finding of BPD. Better understanding of the control mechanisms of normal alveolarization process should help us to figure out the pathophysiology of BPD and discover effective preventive or therapeutic measures for BPD. In this review, the pathologic evolution of BPD from 'old' to 'new' BPD, the detailed mechanisms of normal alveolarization, and the factors that disrupt normal alveolarization will be discussed.

Keywords

References

  1. Husain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol 1998;29:710-7. https://doi.org/10.1016/S0046-8177(98)90280-5
  2. Jobe AJ. The new BPD: an arrest of lung development. Pediatr Res 1999;46:641-3. https://doi.org/10.1203/00006450-199912000-00007
  3. Langston C, Kida K, Reed M, Thurlbeck WM. Human lung growth in late gestation and in the neonate. Am Rev Respir Dis 1984;129: 607-13.
  4. Zeltner TB, Caduff JH, Gehr P, Pfenninger J, Burri PH. The postnatal development and growth of the human lung. I. Morphometry. Respir Physiol 1987;67:247-67. https://doi.org/10.1016/0034-5687(87)90057-0
  5. Baraldi E, Filippone M. Chronic lung disease after premature birth. N Engl J Med 2007;357:1946-55. https://doi.org/10.1056/NEJMra067279
  6. Coalson JJ. Pathology of new bronchopulmonary dysplasia. Semin Neonatol 2003;8:73-81. https://doi.org/10.1016/S1084-2756(02)00193-8
  7. Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M, Wahlers T, et al. The number of alveoli in the human lung. Am J Respir Crit Care Med 2004;169:120-4. https://doi.org/10.1164/rccm.200308-1107OC
  8. DiMaio M, Gil J, Ciurea D, Kattan M. Structural maturation of the human fetal lung: a morphometric study of the development of air-blood barriers. Pediatr Res 1989;26:88-93. https://doi.org/10.1203/00006450-198908000-00002
  9. Amy RW, Bowes D, Burri PH, Haines J, Thurlbeck WM. Postnatal growth of the mouse lung. J Anat 1977;124:131-51.
  10. Metzger RJ, Klein OD, Martin GR, Krasnow MA. The branching programme of mouse lung development. Nature 2008;453:745-50. https://doi.org/10.1038/nature07005
  11. Burri PH. Structural aspects of prenatal and postnatal development and growth of the lung. In: MacDonald JA, editor. Lung growth and development. New York: Marcel Dekker, 1997:1-35.
  12. Massaro GD, Massaro D. Postnatal lung growth: evidence that the gas-exchange region grows fastest at the periphery. Am J Physiol 1993;265:L319-22.
  13. Zeltner TB, Burri PH. The postnatal development and growth of the human lung. II. Morphology. Respir Physiol 1987;67:269-82. https://doi.org/10.1016/0034-5687(87)90058-2
  14. Schittny JC, Djonov V, Fine A, Burri PH. Programmed cell death contributes to postnatal lung development. Am J Respir Cell Mol Biol 1998;18:786-93. https://doi.org/10.1165/ajrcmb.18.6.3031
  15. Bruce MC, Honaker CE, Cross RJ. Lung fibroblasts undergo apoptosis following alveolarization. Am J Respir Cell Mol Biol 1999;20: 228-36. https://doi.org/10.1165/ajrcmb.20.2.3150
  16. Burri PH. Structural aspects of postnatal lung development - alveolar formation and growth. Biol Neonate 2006;89:313-22. https://doi.org/10.1159/000092868
  17. Wood JP, Kolassa JE, McBride JT. Changes in alveolar septal border lengths with postnatal lung growth. Am J Physiol 1998;275: L1157-63.
  18. Mund SI, Stampanoni M, Schittny JC. Developmental alveolarization of the mouse lung. Dev Dyn 2008;237:2108-16. https://doi.org/10.1002/dvdy.21633
  19. Hyde DM, Blozis SA, Avdalovic MV, Putney LF, Dettorre R, Quesenberry NJ, et al. Alveoli increase in number but not size from birth to adulthood in rhesus monkeys. Am J Physiol Lung Cell Mol Physiol 2007;293:L570-9. https://doi.org/10.1152/ajplung.00467.2006
  20. Tschanz SA, Makanya AN, Haenni B, Burri PH. Effects of neonatal high-dose short-term glucocorticoid treatment on the lung: a morphologic and morphometric study in the rat. Pediatr Res 2003;53: 72-80. https://doi.org/10.1203/00006450-200301000-00014
  21. Massaro GD, Radaeva S, Clerch LB, Massaro D. Lung alveoli: endogenous programmed destruction and regeneration. Am J Physiol Lung Cell Mol Physiol 2002;283:L305-9. https://doi.org/10.1152/ajpcell.00590.2001
  22. Coxson HO, Chan IH, Mayo JR, Hlynsky J, Nakano Y, Birmingham CL. Early emphysema in patients with anorexia nervosa. Am J Respir Crit Care Med 2004;170:748-52. https://doi.org/10.1164/rccm.200405-651OC
  23. Hsia CC, Carbayo JJ, Yan X, Bellotto DJ. Enhanced alveolar growth and remodeling in Guinea pigs raised at high altitude. Respir Physiol Neurobiol 2005;147:105-15. https://doi.org/10.1016/j.resp.2005.02.001
  24. Hsia CC, Johnson RL Jr, McDonough P, Dane DM, Hurst MD, Fehmel JL, et al. Residence at 3,800-m altitude for 5 mo in growing dogs enhances lung diffusing capacity for oxygen that persists at least 2.5 years. J Appl Physiol 2007;102:1448-55.
  25. Foster DJ, Yan X, Bellotto DJ, Moe OW, Hagler HK, Estrera AS, et al. Expression of epidermal growth factor and surfactant proteins during postnatal and compensatory lung growth. Am J Physiol Lung Cell Mol Physiol 2002;283:L981-90.
  26. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 1999;277:C1-9.
  27. Vaccaro C, Brody JS. Ultrastructure of developing alveoli. I. The role of the interstitial fibroblast. Anat Rec 1978;192:467-79. https://doi.org/10.1002/ar.1091920402
  28. Torday J, Hua J, Slavin R. Metabolism and fate of neutral lipids of fetal lung fibroblast origin. Biochim Biophys Acta 1995;1254:198- 206. https://doi.org/10.1016/0005-2760(94)00184-Z
  29. Rehan VK, Sugano S, Wang Y, Santos J, Romero S, Dasgupta C, et al. Evidence for the presence of lipofibroblasts in human lung. Exp Lung Res 2006;32:379-93. https://doi.org/10.1080/01902140600880257
  30. Nakamura Y, Fukuda S, Hashimoto T. Pulmonary elastic fibers in normal human development and in pathological conditions. Pediatr Pathol 1990;10:689-706. https://doi.org/10.3109/15513819009064705
  31. ad hoc Statement Committee, American Thoracic Society. Mechanisms and limits of induced postnatal lung growth. Am J Respir Crit Care Med 2004;170:319-43. https://doi.org/10.1164/rccm.200209-1062ST
  32. Wendel DP, Taylor DG, Albertine KH, Keating MT, Li DY. Impaired distal airway development in mice lacking elastin. Am J Respir Cell Mol Biol 2000;23:320-6. https://doi.org/10.1165/ajrcmb.23.3.3906
  33. Maki JM, Sormunen R, Lippo S, Kaarteenaho-Wiik R, Soininen R, Myllyharju J. Lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues. Am J Pathol 2005;167:927- 36. https://doi.org/10.1016/S0002-9440(10)61183-2
  34. McLaughlin PJ, Chen Q, Horiguchi M, Starcher BC, Stanton JB, Broekelmann TJ, et al. Targeted disruption of fibulin-4 abolishes elastogenesis and causes perinatal lethality in mice. Mol Cell Biol 2006;26:1700-9. https://doi.org/10.1128/MCB.26.5.1700-1709.2006
  35. Bland RD, Xu L, Ertsey R, Rabinovitch M, Albertine KH, Wynn KA, et al. Dysregulation of pulmonary elastin synthesis and assembly in preterm lambs with chronic lung disease. Am J Physiol Lung Cell Mol Physiol 2007;292:L1370-84. https://doi.org/10.1152/ajplung.00367.2006
  36. Hashimoto S, Gon Y, Takeshita I, Matsumoto K, Maruoka S, Horie T. Transforming growth Factor-beta1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-Jun-NH2- terminal kinase-dependent pathway. Am J Respir Crit Care Med 2001;163:152-7. https://doi.org/10.1164/ajrccm.163.1.2005069
  37. Chen H, Sun J, Buckley S, Chen C, Warburton D, Wang XF, et al. Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. Am J Physiol Lung Cell Mol Physiol 2005;288:L683-91.
  38. Sime PJ, O'Reilly KM. Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin Immunol 2001;99: 308-19. https://doi.org/10.1006/clim.2001.5008
  39. Bartram U, Speer CP. The role of transforming growth factor beta in lung development and disease. Chest 2004;125:754-65. https://doi.org/10.1378/chest.125.2.754
  40. Lindahl P, Karlsson L, Hellstrom M, Gebre-Medhin S, Willetts K, Heath JK, et al. Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development 1997;124: 3943-53.
  41. Chetty A, Faber S, Nielsen HC. Epithelial-mesenchymal interaction and insulin-like growth factors in hyperoxic lung injury. Exp Lung Res 1999;25:701-18. https://doi.org/10.1080/019021499270015
  42. Warburton D, Bellusci S. The molecular genetics of lung morphogenesis and injury repair. Paediatr Respir Rev 2004;5 Suppl A:S283-7.
  43. Rich CB, Fontanilla MR, Nugent M, Foster JA. Basic fibroblast growth factor decreases elastin gene transcription through an AP1/cAMP-response element hybrid site in the distal promoter. J Biol Chem 1999;274:33433-9. https://doi.org/10.1074/jbc.274.47.33433
  44. Chailley-Heu B, Boucherat O, Barlier-Mur AM, Bourbon JR. FGF-18 is upregulated in the postnatal rat lung and enhances elastogenesis in myofibroblasts. Am J Physiol Lung Cell Mol Physiol 2005;288: L43-51.
  45. Aaronson SA, Bottaro DP, Miki T, Ron D, Finch PW, Fleming TP, et al. Keratinocyte growth factor. A fibroblast growth factor family member with unusual target cell specificity. Ann N Y Acad Sci 1991; 638:62-77. https://doi.org/10.1111/j.1749-6632.1991.tb49018.x
  46. Orr-Urtreger A, Bedford MT, Burakova T, Arman E, Zimmer Y, Yayon A, et al. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev Biol 1993; 158:475-86. https://doi.org/10.1006/dbio.1993.1205
  47. Padela S, Yi M, Cabacungan J, Shek S, Belcastro R, Masood A, et al. A critical role for fibroblast growth factor-7 during early alveolar formation in the neonatal rat. Pediatr Res 2008;63:232-8. https://doi.org/10.1203/PDR.0b013e31815f6e3a
  48. Mariani TJ, Reed JJ, Shapiro SD. Expression profiling of the developing mouse lung: insights into the establishment of the extracellular matrix. Am J Respir Cell Mol Biol 2002;26:541-8. https://doi.org/10.1165/ajrcmb.26.5.2001-00080c
  49. Kaarteenaho-Wiik R, Paakko P, Herva R, Risteli J, Soini Y. Type I and III collagen protein precursors and mRNA in the developing human lung. J Pathol 2004;203:567-74. https://doi.org/10.1002/path.1547
  50. Arden MG, Adamson IY. Collagen degradation during postnatal lung growth in rats. Pediatr Pulmonol 1992;14:95-101. https://doi.org/10.1002/ppul.1950140207
  51. Barbolina MV, Stack MS. Membrane type 1-matrix metalloproteinase: substrate diversity in pericellular proteolysis. Semin Cell Dev Biol 2008;19:24-33. https://doi.org/10.1016/j.semcdb.2007.06.008
  52. Shannon JM, Hyatt BA. Epithelial-mesenchymal interactions in the developing lung. Annu Rev Physiol 2004;66:625-45. https://doi.org/10.1146/annurev.physiol.66.032102.135749
  53. Liu C, Ikegami M, Stahlman MT, Dey CR, Whitsett JA. Inhibition of alveolarization and altered pulmonary mechanics in mice expressing GATA-6. Am J Physiol Lung Cell Mol Physiol 2003;285:L1246- 54. https://doi.org/10.1152/ajpcell.00598.2002
  54. Chen H, Zhuang F, Liu YH, Xu B, Del Moral P, Deng W, et al. TGF-beta receptor II in epithelia versus mesenchyme plays distinct roles in the developing lung. Eur Respir J 2008;32:285-95. https://doi.org/10.1183/09031936.00165407
  55. Ramirez MI, Millien G, Hinds A, Cao Y, Seldin DC, Williams MC. T1alpha, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. Dev Biol 2003; 256:61-72.
  56. Mason RJ, Lewis MC, Edeen KE, McCormick-Shannon K, Nielsen LD, Shannon JM. Maintenance of surfactant protein A and D secretion by rat alveolar type II cells in vitro. Am J Physiol Lung Cell Mol Physiol 2002;282:L249-58.
  57. Deimling J, Thompson K, Tseu I, Wang J, Keijzer R, Tanswell AK, et al. Mesenchymal maintenance of distal epithelial cell phenotype during late fetal lung development. Am J Physiol Lung Cell Mol Physiol 2007;292:L725-41.
  58. Ray P. Protection of epithelial cells by keratinocyte growth factor signaling. Proc Am Thorac Soc 2005;2:221-5. https://doi.org/10.1513/pats.200502-012AC
  59. Torday JS, Sun H, Wang L, Torres E, Sunday ME, Rubin LP. Leptin mediates the parathyroid hormone-related protein paracrine stimulation of fetal lung maturation. Am J Physiol Lung Cell Mol Physiol 2002;282:L405-10.
  60. Dammann CE, Nielsen HC, Carraway KL 3rd. Role of neuregulin-1 beta in the developing lung. Am J Respir Crit Care Med 2003;167: 1711-6. https://doi.org/10.1164/rccm.200205-468OC
  61. Torday JS, Torres E, Rehan VK. The role of fibroblast transdifferentiation in lung epithelial cell proliferation, differentiation, and repair in vitro. Pediatr Pathol Mol Med 2003;22:189-207. https://doi.org/10.1080/15227950307732
  62. Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001;164:1971-80. https://doi.org/10.1164/ajrccm.164.10.2101140
  63. Stenmark KR, Abman SH. Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu Rev Physiol 2005;67:623-61. https://doi.org/10.1146/annurev.physiol.67.040403.102229
  64. Acarregui MJ, Penisten ST, Goss KL, Ramirez K, Snyder JM. Vascular endothelial growth factor gene expression in human fetal lung in vitro. Am J Respir Cell Mol Biol 1999;20:14-23. https://doi.org/10.1165/ajrcmb.20.1.3251
  65. Sirianni FE, Chu FS, Walker DC. Human alveolar wall fibroblasts directly link epithelial type 2 cells to capillary endothelium. Am J Respir Crit Care Med 2003;168:1532-7. https://doi.org/10.1164/rccm.200303-371OC
  66. Makinde T, Agrawal DK. Intra and extravascular transmembrane signalling of angiopoietin-1-Tie2 receptor in health and disease. J Cell Mol Med 2008;12:810-28. https://doi.org/10.1111/j.1582-4934.2008.00254.x
  67. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997;277:55-60. https://doi.org/10.1126/science.277.5322.55
  68. Abdollahi A, Hahnfeldt P, Maercker C, Grone HJ, Debus J, Ansorge W, et al. Endostatin's antiangiogenic signaling network. Mol Cell 2004;13:649-63. https://doi.org/10.1016/S1097-2765(04)00102-9
  69. Maniscalco WM, Watkins RH, Pryhuber GS, Bhatt A, Shea C, Huyck H. Angiogenic factors and alveolar vasculature: development and alterations by injury in very premature baboons. Am J Physiol Lung Cell Mol Physiol 2002;282:L811-23.
  70. Janer J, Andersson S, Haglund C, Lassus P. Pulmonary endostatin perinatally and in lung injury of the newborn infant. Pediatrics 2007; 119:e241-6 https://doi.org/10.1542/peds.2005-3039
  71. Aghai ZH, Faqiri S, Saslow JG, Nakhla T, Farhath S, Kumar A, et al. Angiopoietin 2 concentrations in infants developing bronchopulmonary dysplasia: attenuation by dexamethasone. J Perinatol 2008;28:149-55. https://doi.org/10.1038/sj.jp.7211886
  72. Schwarz MA, Zhang F, Gebb S, Starnes V, Warburton D. Endothelial monocyte activating polypeptide II inhibits lung neovascularization and airway epithelial morphogenesis. Mech Dev 2000;95:123-32. https://doi.org/10.1016/S0925-4773(00)00361-0
  73. Schwarz MA, Wan Z, Liu J, Lee MK. Epithelial-mesenchymal interactions are linked to neovascularization. Am J Respir Cell Mol Biol 2004;30:784-92. https://doi.org/10.1165/rcmb.2003-0145OC
  74. Quintos-Alagheband ML, White CW, Schwarz MA. Potential role for antiangiogenic proteins in the evolution of bronchopulmonary dysplasia. Antioxid Redox Signal 2004;6:137-45. https://doi.org/10.1089/152308604771978444
  75. Moessinger AC, Harding R, Adamson TM, Singh M, Kiu GT. Role of lung fluid volume in growth and maturation of the fetal sheep lung. J Clin Invest 1990;86:1270-7. https://doi.org/10.1172/JCI114834
  76. Joyce BJ, Wallace MJ, Pierce RA, Harding R, Hooper SB. Sustained changes in lung expansion alter tropoelastin mRNA levels and elastin content in fetal sheep lungs. Am J Physiol Lung Cell Mol Physiol 2003;284:L643-9.
  77. Flecknoe SJ, Wallace MJ, Harding R, Hooper SB. Determination of alveolar epithelial cell phenotypes in fetal sheep: evidence for the involvement of basal lung expansion. J Physiol 2002;542:245-53. https://doi.org/10.1113/jphysiol.2001.014274
  78. Wallace MJ, Thiel AM, Lines AM, Polglase GR, Sozo F, Hooper SB. Role of platelet-derived growth factor-B, vascular endothelial growth factor, insulin-like growth factor-II, mitogen-activated protein kinase and transforming growth factor-beta1 in expansioninduced lung growth in fetal sheep. Reprod Fertil Dev 2006;18: 655-65. https://doi.org/10.1071/RD05163
  79. Sozo F, Wallace MJ, Zahra VA, Filby CE, Hooper SB. Gene expression profiling during increased fetal lung expansion identifies genes likely to regulate development of the distal airways. Physiol Genomics 2006; 24:105-13.
  80. Sozo F, Hooper SB, Wallace MJ. Thrombospondin-1 expression and localization in the developing ovine lung. J Physiol 2007;584:625- 35. https://doi.org/10.1113/jphysiol.2007.138735
  81. Muratore CS, Nguyen HT, Ziegler MM, Wilson JM. Stretch-induced upregulation of VEGF gene expression in murine pulmonary culture: a role for angiogenesis in lung development. J Pediatr Surg 2000;35: 906-12. https://doi.org/10.1053/jpsu.2000.6916
  82. Breen EC. Mechanical strain increases type I collagen expression in pulmonary fibroblasts in vitro. J Appl Physiol 2000;88:203-9.
  83. Torday JS, Sanchez-Esteban J, Rubin LP. Paracrine mediators of mechanotransduction in lung development. Am J Med Sci 1998;316: 205-8. https://doi.org/10.1097/00000441-199809000-00010
  84. Bastien J, Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 2004;328:1-16
  85. Dirami G, Massaro GD, Clerch LB, Ryan US, Reczek PR, Massaro D. Lung retinol storing cells synthesize and secrete retinoic acid, an inducer of alveolus formation. Am J Physiol Lung Cell Mol Physiol 2004;286:L249-56. https://doi.org/10.1152/ajplung.00140.2003
  86. Massaro GD, Massaro D. Postnatal treatment with retinoic acid increases the number of pulmonary alveoli in rats. Am J Physiol 1996; 270:L305-10.
  87. McGowan SE, Doro MM, Jackson SK. Endogenous retinoids increase perinatal elastin gene expression in rat lung fibroblasts and fetal explants. Am J Physiol 1997;273:L410-6.
  88. Kim C, Nielsen HC. Hoxa-5 in mouse developing lung: cell-specific expression and retinoic acid regulation. Am J Physiol Lung Cell Mol Physiol 2000;279:L863-71.
  89. Pierce RA, Joyce B, Officer S, Heintz C, Moore C, McCurnin D, et al. Retinoids increase lung elastin expression but fail to alter morphology or angiogenesis genes in premature ventilated baboons. Pediatr Res 2007;61:703-9. https://doi.org/10.1203/pdr.0b013e318053661d
  90. Roth-Kleiner M, Berger TM, Tarek MR, Burri PH, Schittny JC. Neonatal dexamethasone induces premature microvascular maturation of the alveolar capillary network. Dev Dyn 2005;233:1261-71. https://doi.org/10.1002/dvdy.20447
  91. Nemati B, Atmodjo W, Gagnon S, Humes D, McKerlie C, Kaplan F, et al. Glucocorticoid receptor disruption delays structural maturation in the lungs of newborn mice. Pediatr Pulmonol 2008;43:125- 33. https://doi.org/10.1002/ppul.20746
  92. Massaro D, Teich N, Massaro GD. Postnatal development of pulmonary alveoli: modulation in rats by thyroid hormones. Am J Physiol 1986;250:R51-5.
  93. Garcia-Rio F, Pino JM, Diez JJ, Ruiz A, Villasante C, Villamor J. Reduction of lung distensibility in acromegaly after suppression of growth hormone hypersecretion. Am J Respir Crit Care Med 2001; 164:852-7. https://doi.org/10.1164/ajrccm.164.5.2005059
  94. Bartlett D Jr. Postnatal growth of the mammalian lung: influence of excess growth hormone. Respir Physiol 1971;12:297-304. https://doi.org/10.1016/0034-5687(71)90072-7
  95. Willet KE, Jobe AH, Ikegami M, Newnham J, Brennan S, Sly PD. Antenatal endotoxin and glucocorticoid effects on lung morphometry in preterm lambs. Pediatr Res 2000;48:782-8. https://doi.org/10.1203/00006450-200012000-00014
  96. Moss TJ, Newnham JP, Willett KE, Kramer BW, Jobe AH, Ikegami M. Early gestational intra-amniotic endotoxin: lung function, surfactant, and morphometry. Am J Respir Crit Care Med 2002;165:805- 11. https://doi.org/10.1164/ajrccm.165.6.2108053
  97. Bonikos DS, Bensch KG, Northway WH Jr. Oxygen toxicity in the newborn. The effect of chronic continuous 100 percent oxygen exposure on the lungs of newborn mice. Am J Pathol 1976;85:623- 50.
  98. Bruce MC, Honaker CE. Transcriptional regulation of tropoelastin expression in rat lung fibroblasts: changes with age and hyperoxia. Am J Physiol 1998;274:L940-50.
  99. Alejandre-Alcazar MA, Kwapiszewska G, Reiss I, Amarie OV, Marsh LM, Sevilla-Perez J, et al. Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2007;292:L537-49.
  100. Lopez E, Boucherat O, Franco-Montoya ML, Bourbon JR, Delacourt C, Jarreau PH. Nitric oxide donor restores lung growth factor and receptor expression in hyperoxia-exposed rat pups. Am J Respir Cell Mol Biol 2006;34:738-45. https://doi.org/10.1165/rcmb.2005-0254OC
  101. Hosford GE, Olson DM. Effects of hyperoxia on VEGF, its receptors, and HIF-2alpha in the newborn rat lung. Am J Physiol Lung Cell Mol Physiol 2003;285:L161-8. https://doi.org/10.1152/ajpcell.00416.2002
  102. Bland RD, Ertsey R, Mokres LM, Xu L, Jacobson BE, Jiang S, et al. Mechanical ventilation uncouples synthesis and assembly of elastin and increases apoptosis in lungs of newborn mice. Prelude to defective alveolar septation during lung development? Am J Physiol Lung Cell Mol Physiol 2008;294:L3-14.
  103. Speer CP. Inflammation and bronchopulmonary dysplasia: a continuing story. Semin Fetal Neonatal Med 2006;11:354-62. https://doi.org/10.1016/j.siny.2006.03.004
  104. Speer CP. Pulmonary inflammation and bronchopulmonary dysplasia. J Perinatol 2006;26 Suppl 1:S57-62.

Cited by

  1. Risk Factors of Pulmonary Hypertension in Preterm Infants with Chronic Lung Disease vol.20, pp.1, 2011, https://doi.org/10.5385/nm.2013.20.1.75
  2. Association of Interleukin-1α-889, β-31, β-511 Polymorphism with Risk of Bronchopulmonary Dysplasia vol.20, pp.4, 2013, https://doi.org/10.5385/nm.2013.20.4.413