DOI QR코드

DOI QR Code

The Correlation Between RMR and Deformation Modulus by Rock masses using Pressuremeter

공내재하시험을 이용한 암종별 변형계수와 RMR의 상관성

  • 안태봉 (우송대학교 철도건설시스템학과)
  • Received : 2010.04.08
  • Accepted : 2010.10.14
  • Published : 2011.01.01

Abstract

In this study, correlation between measured deformation modulus using pressuremeter and RMR value conducted in 10 sites is analyzed, and applicability of the conventional empirical formulas to the rock masses in Korea are analyzed, It is found that if RMR is below 40, the correlation between deformation modulus and RMR accords Kim Gyo-won's formula and Aydan, Serafim and Pereira's one well, but if the RMR exceeds 40, the correlation was lower than those from the formula. Such results may be attribute to the fact that during classification of RMR, scores are weighed relatively more in joint conditions and apertures than such highly correlational items as uniaxial compression strength or RQD, and RMR would not be evaluated qualitatively due to different weathering degrees and rock mass types as well as engineers' personal errors. Sandstone among sedimentary rocks are quite well accord with suggested equation, but correlation of other rocks are due to large variance. In this study, correlation expressions of various rocks are proposed as the function of exponential based on the field test data.

본 연구에서는 10개 현장에서 실시한 공내재하시험을 통하여 얻은 변형계수와 RMR과의 상관관계를 분석하여 기존에 사용하고 있는 제안식의 적용성을 평가하였다. RMR이 40보다 작은 경우에는 변형계수와 RMR과의 상관관계가 김교원, Aydan, Serafim과 Pereira의 식과 잘 일치하였지만 RMR이 40보다 큰 경우에는 상관관계가 낮았다. 이것은 RMR 분류 시 일축압축강도나 RQD보다 절리의 상태와 절리의 틈새가 상대적으로 가중치가 크기 때문이며 공학자의 개인적 차이뿐만 아니라 암반의 종류와 다른 풍화도 때문에 정성적으로 평가되는 경향이 있기 때문이다. 퇴적암 중 사암은 제안식과 비교적 잘 일치하지만 다른 사암은 분산이 커서 상관관계가 낮다. 본 연구에서는 현장시험결과를 근거로 새로운 지수함수 형태의 식을 제안하였다.

Keywords

References

  1. 김교원(1993), 지공학적 암반분류의 재평가, 봄학술발표대회논문집, 한국지반공학회, pp. 33-40.
  2. 노양섭(2004), 현장암반의 변형계수와 RMR의 상관성, 석사학위논문, 단국대학교, pp. 10-52.
  3. 윤지선 역(1992), 암석역학, 구미서관, pp. 121-124.
  4. 정상훈(2005), 공내재하시험결과를 이용한 암반의 변형계수 추정방법, 석사학위논문, 한양대학교, pp. 16-33.
  5. Aydan, O., Akagi, T. and Kawamto, T.(1993), The Squeezing Potential of Rocks around Tunnels, Theory and Prediction, Rock Mechanics and Rock Engineering, Vol. 262, No. 2, pp. 137-163.
  6. Bieniawski, Z. T.(1978), Determining Rock Mass Deformability: Experience from Case Histories, International Journal of Rock Mechanics, Mining Science and Geomechanics, Vol. 15, pp. 237-247. https://doi.org/10.1016/0148-9062(78)90956-7
  7. Bieniawski, Z. T.(1989), Engineering Rock Mass Classifications, John Wiley & Sons, Inc., N.Y., pp. 51-64.
  8. Hoek, E. and Brown, E. T.(1988), The Hoek-Brown Failure Criterion a 1988 Update, Proc. of 15th Canadian Rock Mech. Symp., Rock Engineering for Underground Excavations, 1082, pp. 31-38.
  9. Mohammad, N., Reddish, D. J. and Stace, L. R.(1997), The Relation between In Situ and Laboratory Rock Properties used in Numerical Modelling (Technical Note), International Journal of Rock Mechanics Mining Science and Geomechanics. Abstract. Vol. 34, No. 2, pp. 289-297. https://doi.org/10.1016/S0148-9062(96)00060-5
  10. Nicholson, G. A. and Bieniawski, Z. T.(1990), A Nonlinear Deformation Modulus Based on Rock Mass Classification, International Journal of Mining and Geological Engineering, pp. 181-202.
  11. Rocha, M.(1974), Present Possibilities of Studying Foundations of Concrete Dams, Proceedings of the 3rd International Congress on Rock Mechanics, Vol. 1A, Denver, Colorado, pp. 879-896.
  12. Serafim, J. L. and Pereira, J. P.(1983), Consideration of the Geomechanical Classification of Bieniawski, Proceedings of International Symposium on Engineering Geology in Underground Construction, Laboratory National Engineering Civil, Lisbon, Portugal, Vol. 1(II), pp. 33-44.