DOI QR코드

DOI QR Code

Impact of Air Pollution on Allergic Diseases

  • Takizawa, Hajime (Department of Respiratory Medicine, Kyorin University School of Medicine)
  • Published : 2011.09.01

Abstract

The incidence of allergic diseases in most industrialized countries has increased. Although the exact mechanisms behind this rapid increase in prevalence remain uncertain, a variety of air pollutants have been attracting attention as one causative factor. Epidemiological and toxicological research suggests a causative relationship between air pollution and the increased incidence of asthma, allergic rhinitis, and other allergic disorders. These include ozone, nitrogen dioxide and, especially particulate matter, produced by traffic-related and industrial activities. Strong epidemiological evidence supports a relationship between air pollution and the exacerbation of asthma and other respiratory diseases. Recent studies have suggested that air pollutants play a role in the development of asthma and allergies. Researchers have elucidated the mechanisms whereby these pollutants induce adverse effects; they appear to affect the balance between antioxidant pathways and airway inflammation. Gene polymorphisms involved in antioxidant pathways can modify responses to air pollution exposure. While the characterization and monitoring of pollutant components currently dictates pollution control policies, it will be necessary to identify susceptible subpopulations to target therapy/prevention of pollution-induced respiratory diseases.

Keywords

References

  1. Eder W, Ege MJ, von Mutius E. The asthma epidemic. N Engl J Med 2006;355:2226-2235. https://doi.org/10.1056/NEJMra054308
  2. Saxon A, Diaz-Sanchez D. Air pollution and allergy: you are what you breathe. Nat Immunol 2005;6:223-226. https://doi.org/10.1038/ni0305-223
  3. Takizawa H. Diesel exhaust particles and their effect on induced cytokine expression in human bronchial epithelial cells. Curr Opin Allergy Clin Immunol 2004;4:355-359. https://doi.org/10.1097/00130832-200410000-00005
  4. Terzano C, Di Stefano F, Conti V, Graziani E, Petroianni A. Air pollution ultrafine particles: toxicity beyond the lung. Eur Rev Med Pharmacol Sci 2010;14:809-821.
  5. Dockery DW, Pope CA 3rd, Xu X, et al. An association between air pollution and mortality in six U.S. cities. N Engl J Med 1993;329:1753-1759. https://doi.org/10.1056/NEJM199312093292401
  6. Schindler C, Keidel D, Gerbase MW, et al. Improvements in PM10 exposure and reduced rates of respiratory symptoms in a cohort of Swiss adults (SAPALDIA). Am J Respir Crit Care Med 2009;179:579-587. https://doi.org/10.1164/rccm.200803-388OC
  7. Bayer-Oglesby L, Grize L, Gassner M, et al. Decline of ambient air pollution levels and improved respiratory health in Swiss children. Environ Health Perspect 2005;113:1632-1637. https://doi.org/10.1289/ehp.8159
  8. McDonnell WF, Horstman DH, Hazucha MJ, et al. Pulmonary effects of ozone exposure during exercise: dose-response characteristics. J Appl Physiol 1983;54:1345-1352. https://doi.org/10.1152/jappl.1983.54.5.1345
  9. Kulle TJ, Sauder LR, Hebel JR, Chatham MD. Ozone response relationships in healthy nonsmokers. Am Rev Respir Dis 1985;132:36-41.
  10. Kinney PL, Thurston GD, Raizenne M. The effects of ambient ozone on lung function in children: a reanalysis of six summer camp studies. Environ Health Perspect 1996;104:170-174.
  11. Peters JM, Avol E, Gauderman WJ, et al. A study of twelve Southern California communities with differing levels and types of air pollution. II. Effects on pulmonary function. Am J Respir Crit Care Med 1999;159:768-775. https://doi.org/10.1164/ajrccm.159.3.9804144
  12. Horvath SM, Gliner JA, Folinsbee LJ. Adaptation to ozone: duration of effect. Am Rev Respir Dis 1981;123:496-499.
  13. Mudway IS, Kelly FJ. An investigation of inhaled ozone dose and the magnitude of airway inflammation in healthy adults. Am J Respir Crit Care Med 2004;169:1089-1095. https://doi.org/10.1164/rccm.200309-1325PP
  14. Gauderman WJ, Avol E, Gilliland F, et al. The effect of air pollution on lung development from 10 to 18 years of age. N Engl J Med 2004;351:1057-1067. https://doi.org/10.1056/NEJMoa040610
  15. Ackermann-Liebrich U, Leuenberger P, Schwartz J, et al. Lung function and long term exposure to air pollutants in Switzerland: Study on Air Pollution and Lung Diseases in Adults (SAPALDIA) Team. Am J Respir Crit Care Med 1997;155:122-129. https://doi.org/10.1164/ajrccm.155.1.9001300
  16. Rosenlund M, Forastiere F, Porta D, De Sario M, Badaloni C, Perucci CA. Traffic-related air pollution in relation to respiratory symptoms, allergic sensitisation and lung function in schoolchildren. Thorax 2009;64:573-580. https://doi.org/10.1136/thx.2007.094953
  17. Avol EL, Gauderman WJ, Tan SM, London SJ, Peters JM. Respiratory effects of relocating to areas of differing air pollution levels. Am J Respir Crit Care Med 2001;164:2067-2072. https://doi.org/10.1164/ajrccm.164.11.2102005
  18. Takizawa H. Airway epithelial cells as regulators of airway inflammation (Review). Int J Mol Med 1998;1:367-378.
  19. Sheffield PE, Weinberger KR, Kinney PL. Climate change, aeroallergens, and pediatric allergic disease. Mt Sinai J Med 2011;78:78-84. https://doi.org/10.1002/msj.20232
  20. Lipsett M, Hurley S, Ostro B. Air pollution and emergency room visits for asthma in Santa Clara County, California. Environ Health Perspect 1997;105:216-222. https://doi.org/10.1289/ehp.97105216
  21. Gauderman WJ, Avol E, Lurmann F, et al. Childhood asthma and exposure to traffic and nitrogen dioxide. Epidemiology 2005;16:737-743. https://doi.org/10.1097/01.ede.0000181308.51440.75
  22. Tunnicliffe WS, Burge PS, Ayres JG. Effect of domestic concentrations of nitrogen dioxide on airway responses to inhaled allergen in asthmatic patients. Lancet 1994;344:1733-1736. https://doi.org/10.1016/S0140-6736(94)92886-X
  23. Strand V, Svartengren M, Rak S, Barck C, Bylin G. Repeated exposure to an ambient level of NO2 enhances asthmatic response to a nonsymptomatic allergen dose. Eur Respir J 1998;12:6-12. https://doi.org/10.1183/09031936.98.12010006
  24. Lin S, Liu X, Le LH, Hwang SA. Chronic exposure to ambient ozone and asthma hospital admissions among children. Environ Health Perspect 2008;116:1725-1730. https://doi.org/10.1289/ehp.11184
  25. Meng YY, Rull RP, Wilhelm M, Lombardi C, Balmes J, Ritz B. Outdoor air pollution and uncontrolled asthma in the San Joaquin Valley, California. J Epidemiol Community Health 2010;64:142-147. https://doi.org/10.1136/jech.2009.083576
  26. Gent JF, Triche EW, Holford TR, et al. Association of low-level ozone and fine particles with respiratory symptoms in children with asthma. JAMA 2003;290:1859-1867. https://doi.org/10.1001/jama.290.14.1859
  27. Just J, Segala C, Sahraoui F, Priol G, Grimfeld A, Neukirch F. Short-term health effects of particulate and photochemical air pollution in asthmatic children. Eur Respir J 2002;20:899-906. https://doi.org/10.1183/09031936.02.00236902
  28. Penttinen P, Vallius M, Tiittanen P, Ruuskanen J, Pekkanen J. Source-specific fine particles in urban air and respiratory function among adult asthmatics. Inhal Toxicol 2006;18:191-198. https://doi.org/10.1080/08958370500434230
  29. Escamilla-Nunez MC, Barraza-Villarreal A, Hernandez-Cadena L, et al. Traffic-related air pollution and respiratory symptoms among asthmatic children, resident in Mexico City: the EVA cohort study. Respir Res 2008;9:74. https://doi.org/10.1186/1465-9921-9-74
  30. Balmes JR, Earnest G, Katz PP, et al. Exposure to traffic: lung function and health status in adults with asthma. J Allergy Clin Immunol 2009;123:626-631. https://doi.org/10.1016/j.jaci.2008.10.062
  31. McCreanor J, Cullinan P, Nieuwenhuijsen MJ, et al. Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med 2007;357:2348-2358. https://doi.org/10.1056/NEJMoa071535
  32. Zhang JJ, McCreanor JE, Cullinan P, et al. Health effects of real-world exposure to diesel exhaust in persons with asthma. Res Rep Health Eff Inst 2009;(138):5-109.
  33. Takizawa H, Ohbayashi O, Azuma A, et al. The official report of Environmental Restoration and Conservation Agency of Japan. Kawasaki: Environmental Restoration and Conservation Agency of Japan, 2011.
  34. Corradi M, Gergelova P, Mutti A. Use of exhaled breath condensate to investigate occupational lung diseases. Curr Opin Allergy Clin Immunol 2010;10:93-98. https://doi.org/10.1097/ACI.0b013e3283357fb7
  35. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Lancet 1998;351:1225-1232. https://doi.org/10.1016/S0140-6736(97)07302-9
  36. Ho SM. Environmental epigenetics of asthma: an update. J Allergy Clin Immunol 2010;126:453-465. https://doi.org/10.1016/j.jaci.2010.07.030
  37. Thornton CA, Macfarlane TV, Holt PG. The hygiene hypothesis revisited: role of materno-fetal interactions. Curr Allergy Asthma Rep 2010;10:444-452. https://doi.org/10.1007/s11882-010-0148-5
  38. Diaz-Sanchez D, Proietti L, Polosa R. Diesel fumes and the rising prevalence of atopy: an urban legend? Curr Allergy Asthma Rep 2003;3:146-152. https://doi.org/10.1007/s11882-003-0027-4
  39. Brauer M, Hoek G, Smit HA, et al. Air pollution and development of asthma, allergy and infections in a birth cohort. Eur Respir J 2007;29:879-888. https://doi.org/10.1183/09031936.00083406
  40. Morgenstern V, Zutavern A, Cyrys J, et al. Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am J Respir Crit Care Med 2008;177:1331-1337. https://doi.org/10.1164/rccm.200701-036OC
  41. Nordling E, Berglind N, Melen E, et al. Traffic-related air pollution and childhood respiratory symptoms, function and allergies. Epidemiology 2008;19:401-408. https://doi.org/10.1097/EDE.0b013e31816a1ce3
  42. Ryan PH, Bernstein DI, Lockey J, et al. Exposure to trafficrelated particles and endotoxin during infancy is associated with wheezing at age 3 years. Am J Respir Crit Care Med 2009;180:1068-1075. https://doi.org/10.1164/rccm.200808-1307OC
  43. Shima M, Nitta Y, Ando M, Adachi M. Effects of air pollution on the prevalence and incidence of asthma in children. Arch Environ Health 2002;57:529-535. https://doi.org/10.1080/00039890209602084
  44. Gehring U, Wijga AH, Brauer M, et al. Traffic-related air pollution and the development of asthma and allergies during the first 8 years of life. Am J Respir Crit Care Med 2010;181:596-603. https://doi.org/10.1164/rccm.200906-0858OC
  45. Kunzli N, Bridevaux PO, Liu LJ, et al. Traffic-related air pollution correlates with adult-onset asthma among never-smokers. Thorax 2009;64:664-670. https://doi.org/10.1136/thx.2008.110031
  46. Oftedal B, Nystad W, Brunekreef B, Nafstad P. Long-term traffic-related exposures and asthma onset in schoolchildren in oslo, norway. Environ Health Perspect 2009;117:839-844. https://doi.org/10.1289/ehp.11491
  47. Anderson HR, Ruggles R, Pandey KD, et al. Ambient particulate pollution and the world-wide prevalence of asthma, rhinoconjunctivitis and eczema in children: Phase One of the International Study of Asthma and Allergies in Childhood (ISAAC). Occup Environ Med 2010;67:293-300. https://doi.org/10.1136/oem.2009.048785
  48. Braback L, Forsberg B. Does traffic exhaust contribute to the development of asthma and allergic sensitization in children: findings from recent cohort studies. Environ Health 2009;8:17. https://doi.org/10.1186/1476-069X-8-17
  49. McConnell R, Islam T, Shankardass K, et al. Childhood incident asthma and traffic-related air pollution at home and school. Environ Health Perspect 2010;118:1021-1026. https://doi.org/10.1289/ehp.0901232
  50. Gilliland FD, Li YF, Saxon A, Diaz-Sanchez D. Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. Lancet 2004;363:119-125. https://doi.org/10.1016/S0140-6736(03)15262-2
  51. McConnell R, Berhane K, Yao L, et al. Traffic, susceptibility, and childhood asthma. Environ Health Perspect 2006;114:766-772. https://doi.org/10.1289/ehp.8594
  52. Gordian ME, Haneuse S, Wakefield J. An investigation of the association between traffic exposure and the diagnosis of asthma in children. J Expo Sci Environ Epidemiol 2006;16:49-55. https://doi.org/10.1038/sj.jea.7500436
  53. Clougherty JE, Kubzansky LD. A framework for examining social stress and susceptibility to air pollution in respiratory health. Environ Health Perspect 2009;117:1351-1358. https://doi.org/10.1289/ehp.0900612
  54. Clougherty JE, Levy JI, Kubzansky LD, et al. Synergistic effects of traffic-related air pollution and exposure to violence on urban asthma etiology. Environ Health Perspect 2007;115:1140-1146. https://doi.org/10.1289/ehp.9863
  55. Meng YY, Wilhelm M, Rull RP, English P, Nathan S, Ritz B. Are frequent asthma symptoms among low-income individuals related to heavy traffic near homes, vulnerabilities, or both? Ann Epidemiol 2008;18:343-350. https://doi.org/10.1016/j.annepidem.2008.01.006
  56. Chen E, Schreier HM, Strunk RC, Brauer M. Chronic trafficrelated air pollution and stress interact to predict biologic and clinical outcomes in asthma. Environ Health Perspect 2008;116:970-975. https://doi.org/10.1289/ehp.11076
  57. Schroer KT, Biagini Myers JM, Ryan PH, et al. Associations between multiple environmental exposures and Glutathione S-Transferase P1 on persistent wheezing in a birth cohort. J Pediatr 2009;154:401-408, 408.e1. https://doi.org/10.1016/j.jpeds.2008.08.040
  58. Sienra-Monge JJ, Ramirez-Aguilar M, Moreno-Macias H, et al. Antioxidant supplementation and nasal inflammatory responses among young asthmatics exposed to high levels of ozone. Clin Exp Immunol 2004;138:317-322. https://doi.org/10.1111/j.1365-2249.2004.02606.x
  59. Behndig AF, Blomberg A, Helleday R, Kelly FJ, Mudway IS. Augmentation of respiratory tract lining fluid ascorbate concentrations through supplementation with vitamin C. Inhal Toxicol 2009;21:250-258. https://doi.org/10.1080/08958370802474736
  60. Romieu I, Sienra-Monge JJ, Ramirez-Aguilar M, et al. Genetic polymorphism of GSTM1 and antioxidant supplementation influence lung function in relation to ozone exposure in asthmatic children in Mexico City. Thorax 2004;59:8-10.
  61. Kelly FJ, Fussell JC. Air pollution and airway disease. Clin Exp Allergy 2011;41:1059-1071. https://doi.org/10.1111/j.1365-2222.2011.03776.x
  62. Riedl M, Diaz-Sanchez D. Biology of diesel exhaust effects on respiratory function. J Allergy Clin Immunol 2005;115:221-228. https://doi.org/10.1016/j.jaci.2004.11.047
  63. Diaz-Sanchez D. The role of diesel exhaust particles and their associated polyaromatic hydrocarbons in the induction of allergic airway disease. Allergy 1997;52(38 Suppl):52-56. https://doi.org/10.1111/j.1398-9995.1997.tb04871.x
  64. Xu GB, Yu CP. Deposition of diesel exhaust particles in mammalian lungs: a comparison between rodents and man. Aerosol Sci Technol 1987;7:117-123. https://doi.org/10.1080/02786828708959152
  65. Boland S, Baeza-Squiban A, Fournier T, et al. Diesel exhaust particles are taken up by human airway epithelial cells in vitro and alter cytokine production. Am J Physiol 1999;276(4 Pt 1):L604-L613.
  66. Ohtoshi T, Takizawa H, Okazaki H, et al. Diesel exhaust particles stimulate human airway epithelial cells to produce cytokines relevant to airway inflammation in vitro. J Allergy Clin Immunol 1998;101(6 Pt 1):778-785. https://doi.org/10.1016/S0091-6749(98)70307-0
  67. Bayram H, Devalia JL, Khair OA, et al. Comparison of ciliary activity and inflammatory mediator release from bronchial epithelial cells of nonatopic nonasthmatic subjects and atopic asthmatic patients and the effect of diesel exhaust particles in vitro. J Allergy Clin Immunol 1998;102:771-782. https://doi.org/10.1016/S0091-6749(98)70017-X
  68. Takizawa H, Abe S, Ohtoshi T, et al. Diesel exhaust particles up-regulate expression of intercellular adhesion molecule-1 (ICAM-1) in human bronchial epithelial cells. Clin Exp Immunol 2000;120:356-362. https://doi.org/10.1046/j.1365-2249.2000.01213.x
  69. Takizawa H, Ohtoshi T, Kawasaki S, et al. Diesel exhaust particles induce NF-kappa B activation in human bronchial epithelial cells in vitro: importance in cytokine transcription. J Immunol 1999;162:4705-4711.
  70. Takizawa H, Abe S, Okazaki H, et al. Diesel exhaust particles upregulate eotaxin gene expression in human bronchial epithelial cells via nuclear factor-kappa B-dependent pathway. Am J Physiol Lung Cell Mol Physiol 2003;284:L1055-L1062. https://doi.org/10.1152/ajplung.00358.2002
  71. Bommel H, Haake M, Luft P, et al. The diesel exhaust component pyrene induces expression of IL-8 but not of eotaxin. Int Immunopharmacol 2003;3:1371-1379. https://doi.org/10.1016/S1567-5769(03)00135-8
  72. Hashimoto S, Gon Y, Takeshita I, et al. Diesel exhaust particles activate p38 MAP kinase to produce interleukin 8 and RANTES by human bronchial epithelial cells and N-acetylcysteine attenuates p38 MAP kinase activation. Am J Respir Crit Care Med 2000;161:280-285. https://doi.org/10.1164/ajrccm.161.1.9904110
  73. Boland S, Bonvallot V, Fournier T, Baeza-Squiban A, Aubier M, Marano F. Mechanisms of GM-CSF increase by diesel exhaust particles in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2000;278:L25-L32. https://doi.org/10.1152/ajplung.2000.278.1.L25
  74. Li N, Wang M, Oberley TD, Sempf JM, Nel AE. Comparison of the pro-oxidative and proinflammatory effects of organic diesel exhaust particle chemicals in bronchial epithelial cells and macrophages. J Immunol 2002;169:4531-4541. https://doi.org/10.4049/jimmunol.169.8.4531
  75. Salvi S, Blomberg A, Rudell B, et al. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med 1999;159:702-709. https://doi.org/10.1164/ajrccm.159.3.9709083
  76. Salvi SS, Nordenhall C, Blomberg A, et al. Acute exposure to diesel exhaust increases IL-8 and GRO-alpha production in healthy human airways. Am J Respir Crit Care Med 2000;161(2 Pt 1):550-557.
  77. Stenfors N, Nordenhall C, Salvi SS, et al. Different airway inflammatory responses in asthmatic and healthy humans exposed to diesel. Eur Respir J 2004;23:82-86. https://doi.org/10.1183/09031936.03.00004603
  78. Holgate ST, Sandstrom T, Frew AJ, et al. Health effects of acute exposure to air pollution. Part I: Healthy and asthmatic subjects exposed to diesel exhaust. Res Rep Health Eff Inst 2003;(112):1-30.
  79. Kradin RL, Sakamoto H, Jain F, Zhao LH, Hymowitz G, Preffer F. IL-10 inhibits inflammation but does not affect fibrosis in the pulmonary response to bleomycin. Exp Mol Pathol 2004;76:205-211. https://doi.org/10.1016/j.yexmp.2003.12.010
  80. Zhang Q, Kleeberger SR, Reddy SP. DEP-induced fra-1 expression correlates with a distinct activation of AP-1-dependent gene transcription in the lung. Am J Physiol Lung Cell Mol Physiol 2004;286:L427-L436. https://doi.org/10.1152/ajplung.00221.2003
  81. Blanchet S, Ramgolam K, Baulig A, Marano F, Baeza-Squiban A. Fine particulate matter induces amphiregulin secretion by bronchial epithelial cells. Am J Respir Cell Mol Biol 2004;30:421-427. https://doi.org/10.1165/rcmb.2003-0281RC
  82. Pourazar J, Blomberg A, Kelly FJ, et al. Diesel exhaust increases EGFR and phosphorylated C-terminal Tyr 1173 in the bronchial epithelium. Part Fibre Toxicol 2008;5:8. https://doi.org/10.1186/1743-8977-5-8
  83. Di Giampaolo L, Quecchia C, Schiavone C, et al. Environmental pollution and asthma. Int J Immunopathol Pharmacol 2011;24(1 Suppl):31S-38S. https://doi.org/10.1177/03946320110240S207
  84. Xu X, Kherada N, Hong X, et al. Diesel exhaust exposure induces angiogenesis. Toxicol Lett 2009;191:57-68. https://doi.org/10.1016/j.toxlet.2009.08.006
  85. Bonvallot V, Baeza-Squiban A, Baulig A, et al. Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression. Am J Respir Cell Mol Biol 2001;25:515-521. https://doi.org/10.1165/ajrcmb.25.4.4515
  86. Kawasaki S, Takizawa H, Takami K, et al. Benzene-extracted components are important for the major activity of diesel exhaust particles: effect on interleukin-8 gene expression in human bronchial epithelial cells. Am J Respir Cell Mol Biol 2001;24:419-426. https://doi.org/10.1165/ajrcmb.24.4.4085
  87. Tal TL, Simmons SO, Silbajoris R, et al. Differential transcriptional regulation of IL-8 expression by human airway epithelial cells exposed to diesel exhaust particles. Toxicol Appl Pharmacol 2010;243:46-54. https://doi.org/10.1016/j.taap.2009.11.011
  88. Li YJ, Takizawa H, Kawada T. Role of oxidative stresses induced by diesel exhaust particles in airway inflammation, allergy and asthma: their potential as a target of chemoprevention. Inflamm Allergy Drug Targets 2010;9:300-305. https://doi.org/10.2174/187152810793358787
  89. Sagai M, Furuyama A, Ichinose T. Biological effects of diesel exhaust particles (DEP). III. Pathogenesis of asthma like symptoms in mice. Free Radic Biol Med 1996;21:199-209. https://doi.org/10.1016/0891-5849(96)00032-9
  90. Miyabara Y, Takano H, Ichinose T, Lim HB, Sagai M. Diesel exhaust enhances allergic airway inflammation and hyperresponsiveness in mice. Am J Respir Crit Care Med 1998;157(4 Pt 1):1138-1144. https://doi.org/10.1164/ajrccm.157.4.9708066
  91. Takano H, Ichinose T, Miyabara Y, et al. Inhalation of diesel exhaust enhances allergen-related eosinophil recruitment and airway hyperresponsiveness in mice. Toxicol Appl Pharmacol 1998;150:328-337. https://doi.org/10.1006/taap.1998.8437
  92. Muranaka M, Suzuki S, Koizumi K, et al. Adjuvant activity of diesel-exhaust particulates for the production of IgE antibody in mice. J Allergy Clin Immunol 1986;77:616-623. https://doi.org/10.1016/0091-6749(86)90355-6
  93. Takano H, Yoshikawa T, Ichinose T, Miyabara Y, Imaoka K, Sagai M. Diesel exhaust particles enhance antigen-induced airway inflammation and local cytokine expression in mice. Am J Respir Crit Care Med 1997;156:36-42. https://doi.org/10.1164/ajrccm.156.1.9610054
  94. Ohta K, Yamashita N, Tajima M, et al. Diesel exhaust particulate induces airway hyperresponsiveness in a murine model: essential role of GM-CSF. J Allergy Clin Immunol 1999;104:1024-1030. https://doi.org/10.1016/S0091-6749(99)70084-9
  95. Ichinose T, Takano H, Miyabara Y, Sagai M. Long-term exposure to diesel exhaust enhances antigen-induced eosinophilic inflammation and epithelial damage in the murine airway. Toxicol Sci 1998;44:70-79. https://doi.org/10.1093/toxsci/44.1.70
  96. Matsumoto A, Hiramatsu K, Li Y, et al. Repeated exposure to low-dose diesel exhaust after allergen challenge exaggerates asthmatic responses in mice. Clin Immunol 2006;121:227-235. https://doi.org/10.1016/j.clim.2006.08.003
  97. Li YJ, Kawada T, Matsumoto A, et al. Airway inflammatory responses to oxidative stress induced by low-dose diesel exhaust particle exposure differ between mouse strains. Exp Lung Res 2007;33:227-244. https://doi.org/10.1080/01902140701481062
  98. Li YJ, Kawada T, Takizawa H, et al. Airway inflammatory responses to oxidative stress induced by prolonged low-dose diesel exhaust particle exposure from birth differ between mouse BALB/c and C57BL/6 strains. Exp Lung Res 2008;34:125-139. https://doi.org/10.1080/01902140701884406
  99. Kang KW, Lee SJ, Kim SG. Molecular mechanism of nrf2 activation by oxidative stress. Antioxid Redox Signal 2005;7:1664-1673. https://doi.org/10.1089/ars.2005.7.1664
  100. Li YJ, Takizawa H, Azuma A, et al. Disruption of Nrf2 enhances susceptibility to airway inf lammatory responses induced by low-dose diesel exhaust particles in mice. Clin Immunol 2008;128:366-373. https://doi.org/10.1016/j.clim.2008.05.005
  101. Li YJ, Takizawa H, Azuma A, et al. Nrf2 is closely related to allergic airway inflammatory responses induced by low-dose diesel exhaust particles in mice. Clin Immunol 2010;137:234-241. https://doi.org/10.1016/j.clim.2010.07.014
  102. Li YJ, Takizawa H, Azuma A, et al. The effects of oxidative stress induced by prolonged low-dose diesel exhaust particle exposure on the generation of allergic airway inflammation differ between BALB/c and C57BL/6 mice. Immunopharmacol Immunotoxicol 2009;31:230-237. https://doi.org/10.1080/08923970802383316
  103. Rangasamy T, Guo J, Mitzner WA, et al. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med 2005;202:47-59. https://doi.org/10.1084/jem.20050538
  104. Hashizume M, Ueda K, Nishiwaki Y, Michikawa T, Onozuka D. Health effects of Asian dust events: a review of the literature. Nihon Eiseigaku Zasshi 2010;65:413-421. https://doi.org/10.1265/jjh.65.413
  105. Ichinose T, Yoshida S, Hiyoshi K, et al. The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation. Arch Environ Contam Toxicol 2008;55:348-357. https://doi.org/10.1007/s00244-007-9128-8
  106. Ichinose T, Hiyoshi K, Yoshida S, et al. Asian sand dust aggravates allergic rhinitis in guinea pigs induced by Japanese cedar pollen. Inhal Toxicol 2009;21:985-993. https://doi.org/10.1080/08958370802672883
  107. Whitekus MJ, Li N, Zhang M, et al. Thiol antioxidants inhibit the adjuvant effects of aerosolized diesel exhaust particles in a murine model for ovalbumin sensitization. J Immunol 2002;168:2560-2567. https://doi.org/10.4049/jimmunol.168.5.2560
  108. Tashakkor AY, Chow KS, Carlsten C. Modification by antioxidant supplementation of changes in human lung function associated with air pollutant exposure: a systematic review. BMC Public Health 2011;11:532. https://doi.org/10.1186/1471-2458-11-532

Cited by

  1. Therapeutic options for severe asthma vol.8, pp.4, 2011, https://doi.org/10.5114/aoms.2012.30280
  2. Analysis of Key Features of Non-Linear Behaviour Using Recurrence Quantification. Case Study: Urban Airborne Pollution at Mexico City vol.19, pp.2, 2014, https://doi.org/10.1007/s10666-013-9381-3
  3. Carbon monoxide and respiratory symptoms in young adult passive smokers: A pilot study comparing waterpipe to cigarette vol.27, pp.4, 2011, https://doi.org/10.2478/s13382-014-0246-z
  4. Association between PM10 concentrations and school absences in proximity of a cement plant in northern Italy vol.217, pp.2, 2014, https://doi.org/10.1016/j.ijheh.2013.07.016
  5. Allergic diseases: the price of civilisational progress vol.31, pp.2, 2011, https://doi.org/10.5114/pdia.2014.40936
  6. Prevalence and risk factors for allergic rhinitis in bakers in Douala, Cameroon vol.4, pp.8, 2014, https://doi.org/10.1136/bmjopen-2014-005329
  7. The Effect of PM 10 on Allergy Symptoms in Allergic Rhinitis Patients During Spring Season vol.12, pp.1, 2011, https://doi.org/10.3390/ijerph120100735
  8. Air pollution and allergic diseases vol.27, pp.6, 2011, https://doi.org/10.1097/mop.0000000000000286
  9. Environmental Health and Long Non-coding RNAs vol.3, pp.3, 2011, https://doi.org/10.1007/s40572-016-0092-1
  10. Particulate matter, the newborn methylome, and cardio-respiratory health outcomes in childhood vol.2, pp.2, 2011, https://doi.org/10.1093/eep/dvw005
  11. Air pollution, epigenetics, and asthma vol.12, pp.1, 2016, https://doi.org/10.1186/s13223-016-0159-4
  12. Anti-allergic and anti-inflammatory effects of aqueous extract of Pogostemon cablin vol.37, pp.1, 2011, https://doi.org/10.3892/ijmm.2015.2401
  13. Emergency Department Visits for Asthma Exacerbation due to Weather Conditions and Air Pollution in Chuncheon, Korea: A Case-Crossover Analysis vol.8, pp.6, 2011, https://doi.org/10.4168/aair.2016.8.6.512
  14. Mitochondrial Function in Allergic Disease vol.17, pp.5, 2017, https://doi.org/10.1007/s11882-017-0695-0
  15. Relación de los mecanismos inmunológicos del asma y la contaminación ambiental vol.65, pp.2, 2011, https://doi.org/10.15446/revfacmed.v65n2.59954
  16. Low Concentration PM 10 Had No Effect on Nasal Symptoms and Flow in Allergic Rhinitis Patients vol.10, pp.2, 2011, https://doi.org/10.21053/ceo.2016.01116
  17. Ameliorative effects of type-A procyanidins polyphenols from cinnamon bark in compound 48/80-induced mast cell degranulation vol.50, pp.4, 2017, https://doi.org/10.5115/acb.2017.50.4.275
  18. The role of particulate matters on methylation of IFN-γ and IL-4 promoter genes in pediatric allergic rhinitis vol.9, pp.25, 2018, https://doi.org/10.18632/oncotarget.24227
  19. The prevalence of allergic diseases in school children of metropolitan city in Indonesia shows a similar pattern to that of developed countries vol.9, pp.2, 2011, https://doi.org/10.5415/apallergy.2019.9.e17
  20. Childhood respiratory allergies and symptoms in highly polluted area of Central Europe vol.29, pp.1, 2011, https://doi.org/10.1080/09603123.2018.1514458
  21. Do helminth infections underpin urban‐rural differences in risk factors for allergy‐related outcomes? vol.49, pp.5, 2011, https://doi.org/10.1111/cea.13335
  22. A link between environmental pollution and civilization disorders: a mini review vol.34, pp.3, 2011, https://doi.org/10.1515/reveh-2018-0083
  23. Air pollution and exacerbation of skin itching and sleep disturbance in Iranian atopic dermatitis patients vol.17, pp.2, 2019, https://doi.org/10.1007/s40201-019-00397-4
  24. SG-SP1 Suppresses Mast Cell-Mediated Allergic Inflammation via Inhibition of FcεRI Signaling vol.11, pp.None, 2011, https://doi.org/10.3389/fimmu.2020.00050
  25. The effect of cetirizine, a histamine 1 receptor antagonist, on bone remodeling after calvarial suture expansion vol.50, pp.1, 2011, https://doi.org/10.4041/kjod.2020.50.1.42
  26. Indoor environmental conditions in schoolchildren’s homes in central-south China vol.29, pp.7, 2020, https://doi.org/10.1177/1420326x19875185
  27. Nrf2 positively regulates autophagy antioxidant response in human bronchial epithelial cells exposed to diesel exhaust particles vol.10, pp.None, 2011, https://doi.org/10.1038/s41598-020-59930-3
  28. Prenatal and Postnatal Cigarette Smoke Exposure Is Associated With Increased Risk of Exacerbated Allergic Airway Immune Responses: A Preclinical Mouse Model vol.12, pp.None, 2011, https://doi.org/10.3389/fimmu.2021.797376
  29. Sulfur dioxide and exacerbation of allergic respiratory diseases: A time-stratified case-crossover study vol.26, pp.1, 2011, https://doi.org/10.4103/jrms.jrms_6_20