DOI QR코드

DOI QR Code

Enzymatic Hydrolysis of Pre-treated Ulva pertusa with Alkaline Peroxide

구멍갈파래의 알칼리 과산화수소 전처리 및 효소 가수분해 특성

  • Yoon, Byung-Tae (Green Chemistry Division, Chemical Biotechnology Research Center, KRICT) ;
  • Kim, Young-Wun (Green Chemistry Division, Chemical Biotechnology Research Center, KRICT) ;
  • Chung, Keun-Wo (Green Chemistry Division, Chemical Biotechnology Research Center, KRICT) ;
  • Kim, Jin-Seog (Green Chemistry Division, Chemical Biotechnology Research Center, KRICT)
  • 윤병태 (한국화학연구원 그린화학연구본부) ;
  • 김영운 (한국화학연구원 그린화학연구본부) ;
  • 정근우 (한국화학연구원 그린화학연구본부) ;
  • 김진석 (한국화학연구원 그린화학연구본부)
  • Received : 2011.02.17
  • Accepted : 2011.04.01
  • Published : 2011.06.10

Abstract

Algae is an abundant and potential fermentation substrate. The enzymatic hydrolysis of algae was investigated by pre-treating an alkaline hydrogen peroxide with commercial cellulase and viscozyme. Algae used in this study was the Ulva pertusa. The evaluated response was the yield of released glucose after the enzymatic hydrolysis. Alkaline hydrogen peroxide containing mixtures of 1 wt% hydrogen peroxide and 1~1.75 wt% sodium hydroxide was also used. The results show that the highest glucose conversion was obtained for Ulva pertusa using 5 wt% hydrogen peroxide at $60^{\circ}C$ for 3 h. The required amount of enzymes after the pre-treatment with alkaline hydrogen peroxide were reduced by far compared to that of untreated Ulva pertusa. Also, the amount of glucose that is released during the enzymatic hydrolysis was increased.

해조류는 잠재력이 있는 풍부한 발효기질이다. 해조류의 효소가수분해를 상업용 셀룰라아제 및 비스코자임과 함께 알칼리 과산화수소 전처리에 의해서 검토하였다. 본 연구에서 사용된 해조류는 구멍갈파래이며, 전처리 평가는 효소가수분해 후 얻어진 글루코오스의 수율로 나타내었다. 알칼리 과산화수소는 과산화수소 1 wt%에 수산화나트륨을 1~1.75 wt% 범위로 혼합하였다. $60^{\circ}C$에서 3 h 동안 전처리한 결과 5 wt% 과산화수소를 사용했을 때에 가장 높은 글루코오스 전환율을 보였다. 알칼리 과산화수소로 전처리한 후 필요한 효소의 양은 전처리하지 않은 구멍갈파래에 비하여 상당히 절감되었으며, 아울러 효소 가수분해동안 얻어진 글루코오스의 양은 증가되었다.

Keywords

References

  1. D. Pimentel and T. W. Patzek, Netherlands Springer, 358 (2008).
  2. A. T. W. M. Hendriks and G. Zeeman, Bioresource Tech., 100, 10 (2009). https://doi.org/10.1016/j.biortech.2008.05.027
  3. N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, and M. Ladisch, Bioresource Tech., 96, 673 (2005). https://doi.org/10.1016/j.biortech.2004.06.025
  4. M. K. Lee, S. Y. Hwang, S. Y. Choi, H. S. Lee, and J. H. Lee, News & Information for Chemical Engineers, 28, 506 (2010).
  5. Y. H. P. Zhang and L. R. Lynd, Biotechnol Bioeng., 88, 797 (2004). https://doi.org/10.1002/bit.20282
  6. R. Kumar and C. E. Wyman, Biotechnol. Prog., 25, 302 (2009a). https://doi.org/10.1002/btpr.102
  7. H. Chen, Y. Han, and J. Xu, Process Biochemistry, 43, 1462 (2008). https://doi.org/10.1016/j.procbio.2008.07.003
  8. J. X, Sun, X. F. Sun, R. C. Sun, and Y. Q. Su, Carbohyd Polym., 56, 195 (2004). https://doi.org/10.1016/j.carbpol.2004.02.002
  9. J. R. Monte, M. Brienzo, and A. M. F. Milagres, Appl. Energy, 88, 403 (2011). https://doi.org/10.1016/j.apenergy.2010.08.009
  10. M. J. Taherzadeh and K. Karimi, Pretreatment of lignocellulogic wastes to improve ethanol and biogas production; a review, Int. J. Mol. Sci., 9, 1621 (2008). https://doi.org/10.3390/ijms9091621
  11. K. E. L. Eriksson, R. A. Blanchette, and P. Ander, Microbial and Enzymatic Degradation of wood and wood components, 102 (1990).
  12. Y. Teramoto and S. H. Lee, Bioresour. Technol., 99, 8856 (2008). https://doi.org/10.1016/j.biortech.2008.04.049
  13. M. Chen, J. Zhao, and L. Xia, Biomass and Bioenergy, 33, 1381 (2009). https://doi.org/10.1016/j.biombioe.2009.05.025
  14. K. J. Hipolit, Chemical Processing Aids in Papermaking Guide, 196 (1992).
  15. H. Y. Lee and K. H. Chung, Korea Patent, 10-2008-0056322 (2008).
  16. R. Marton and S. Granzow, Tappi J., 65, 103 (1982).