DOI QR코드

DOI QR Code

Water Purification Properties of Porous Zeolite Concrete

다공성 제올라이트 콘크리트의 수질정화 특성

  • Received : 2011.05.10
  • Accepted : 2011.05.16
  • Published : 2011.06.10

Abstract

As our interests in eco-friendly materials have been significantly increased, the utilization of porous zeolite concrete that has structural functionality and permeability has been increased. In this paper, the mixture of porous concrete and zeolite, which can be used as multirole boulders, was investigated for the suitability of an environment-friendly product by evaluating of the water purification ability. The contamination removal rates of BOD, TOC, T-N, and T-P in stagnant water tank were 70.6, 67.0, 57.7, and 50.6%, respectively. Also for the non-point source pollution with the inflow and the outflow, the removal rates of Zn, Pb, BOD, and COD were 99.9, 90.0, 69.2, and 33.5%, respectively. The performance of the heavy metal contamination removal for the porous zeolite showed better than that of stagnant system. Therefore, it is expected that the installation of the porous zeolite concrete can play a role as an eco-friendly products by its high contamination removal.

친환경 재료에 대한 관심이 급증함에 따라 재료의 구조적 기능성 및 투수성을 동시에 갖는 다공성 콘크리트의 활용이 증가되고 있다. 본 연구에서는 다공성 콘크리트에 제올라이트를 혼합하여 다양한 활용도를 갖는 다기능형 옥석 제품의 수질정화 능력을 평가하여 친환경제품으로서의 적합성을 검토하였다. 흐름이 없는 시험용 수조에서 시간에 따른 오염도 제거율은 T-N (70.6%), T-P (67.0%), BOD (57.7%), TOC (50.6%) 순으로 우수한 수질정화 특성을 보였다. 또한 유입 및 유출이 가능한 비점오염원에서 시간에 따른 유출부에서의 수질오염도 및 중금속 농도의 제거율은 Zn (99.9%), Pb (90.0%), BOD (69.2%), COD (33.5%) 순으로 흐름이 없는 경우에서의 오염도 제거율보다 수질정화 특성이 우수한 것으로 나타났다. 따라서 다공성 콘크리트 시설물을 실제 하천 등에 시공했을 시에 우수한 오염도 제거율을 바탕으로 친환경제품으로 적합함을 확인할 수 있었다.

Keywords

References

  1. P. Chindaprasirt, S. Hatanaka, T. Chareerat, N. Mishima, and Y. Yuasa, Construction and Building Materials, 22, 894 (2008). https://doi.org/10.1016/j.conbuildmat.2006.12.007
  2. M. A. Pindado, A. Aguado, and A. Josa, Cement and Concrete Research, 29, 1077 (1999). https://doi.org/10.1016/S0008-8846(99)00095-2
  3. M. H. Kim, Y. K. Baik, S. P. Kang, Y. R. Kim, and J. H. Kim, J. Korea Concr. Inst., 13, 438 (2001).
  4. M. H. Kim, K. Y. Kim, and Y. K. Baik, J. Korea Concr. Inst., 12, 91 (2000).
  5. S. B. Park, D. S. Seo, and J. Lee, Cement and Concrete Research, 35, 1846 (2005). https://doi.org/10.1016/j.cemconres.2004.12.009
  6. S. H. Yoon, K. H. Jung, Y. D. Lee, and S. J. Jeong, J. of the Architectural Institute of Korea, 19, 139 (2003).
  7. J. E. Kim, S. H. Yoon, W. J. Kim, S. S. Kim, Y. D. Lee, and S. J. Jung, J. of the Architectural Institute of Korea, 23, 407 (2003).
  8. S. B. Park and M. Tia, Cement and Concrete Research, 34, 177 (2004). https://doi.org/10.1016/S0008-8846(03)00223-0
  9. J. Mrnutík and A. Komínek, J. of Environmental Radioactivity, 12, 121 (1990). https://doi.org/10.1016/0265-931X(90)90002-D
  10. Y. W. Jung, S. H. Lee, and S. S. Jang, J. Korea Concr. Inst., 17, 691 (2005).
  11. P. Chindaprasirt, S. Hatanaka, T. Chareerat, N. Mishima, and Y. Yuasa, Construction and Building Materials, 22, 894 (2008). https://doi.org/10.1016/j.conbuildmat.2006.12.007
  12. S. B. Park, Y. I. Jang, and J. Lee, J. of the Korea Society of Waste Management, 25, 202 (2008).
  13. S. J. Jung, J. of the Korea Institute of Building Construction, 4, 89 (2004).
  14. J. H. Kim, N. I. Lee, Y. H. Lee, H. J. Kwon, J. Lee, and S. B. Park, J. Korea Concr. Inst., 17, 769 (2005). https://doi.org/10.4334/JKCI.2005.17.5.769