DOI QR코드

DOI QR Code

Carbon Dioxide Fixation and Light Source Effects of Spirulina platensis NIES 39 for LED Photobioreactor Design

Spirulina platensis NIES 39를 이용한 LED 광생물반응기에서의 이산화탄소 고정화와 광원 효과

  • Kim, Ji-Youn (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Joo, Hyun (Department of Physiology and Integrated Biosystems, College of Medicine, Inje University) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
  • 김지윤 (신라대학교 공과대학 생명공학과) ;
  • 주현 (인제대학교 생리학교실) ;
  • 이재화 (신라대학교 공과대학 생명공학과)
  • Received : 2011.03.11
  • Accepted : 2011.04.18
  • Published : 2011.06.10

Abstract

Optimal culture conditions of Spirulina platensis NIES 39 have been established using different types of light sources. Several types of photobioreactors were designed and the increase of biomass, the amount of $CO_2$, fixation and the production of chlorophyll content were studied. The result revealed that the input conditions of a 10 min period per 4 h at the condition of 5% $CO_2$ and 0.1 vvm, were excellent in the growth. The growth showing the maximum biomass accumulation is limited to 1.411 g/L when using the fluorescent bulb and the low powered surface mount device (SMD) type LEDs which were equipped-inside in the photobioreactor. However, the biomass exceeded up to 1.758 g/L level when a high powered red LED (color temperature : 12000 K) photobioreactor system was used. The $CO_2$ fixation speed and rate were increased. Although the total production of chlorophyll content undergoes a proportional increase in the biomass, the net content per dry cell weight (DCW) showed the higher production with a blue LED (color temperature : 7500 K) light than that of any other wavelengths. The carbon dioxide loss was marked as 0.15% of the inlet gas (5% $CO_2/Air$, v/v) at the maximum biomass culture condition.

Spirulina platensis NIES 39의 최적 배양 조건을 확립하고자 본 연구에서는 여러 광원에 따른 균체의 생장양상을 확인하여 보았다. 이를 기반으로 형광등 및 LED 광생물반응기를 개발하여 균체농도 증가, 이산화탄소 고정화속도 및 효율, 클로로필 생산에 대한 연구를 수행하였다. 배양에 공급되는 이산화탄소 농도 및 유속은 명 조건에서 약 4 h 주기로 10 min간 5% $CO_2$, 0.1 vvm임이 확인되었다. 내부조사형 형광등 광원 및 저전력형 SMD 타입 적색광 LED 광생물반응기는 최대 배양 건조 균체량이 1.411 g/L를 넘지 못하였지만, 조도를 높인 파워형 적색광 LED (색온도 12000 K)에서는 최대 건조 균체량이 1.758 g/L가 되었다. 이 경우 이산화탄소 고정화 속도 및 효율 또한 증가되었다. 총 클로로필 생산량은 균체량 증가에 비례하여 증가하였지만, 건조균체질량당 생산량은 청색광 LED조건(색온도 7500 K)에서 더 높은 수치를 보여주었다. 그리고 최대 균체생장조건(DCW)에서 이산화탄소 농도는 주입량(5% $CO_2/Air$, v/v) 대비 유실률은 0.15% 이내로 확인되었다.

Keywords

References

  1. L. Binaghi, A. D. Borghi, A. Converti, and M. D. Borghi, Proc. Biochem., 38, 1241 (2003).
  2. S. Y. Chiu, C.-Y. Kao, C.-H. Chen, T.-C. Kuan, S.-C. Ong, and C.-S. Lin, Bio. Technol., 99, 3389 (2008). https://doi.org/10.1016/j.biortech.2007.08.013
  3. C. D. Kang, T. H. Park, and S. J. Sim, Korean Chem. Eng. Res., 44, 46 (2006).
  4. Y.-S. Kim, H. I. Park, D. K. Kim, and D. Pak, Korean J. Biotechnol. Bioeng., 18, 277 (2003).
  5. H. M. Oh, J. S. Kim, and S. J. Lee, Kor. J. of Environ, Biol., 16, 291 (1998).
  6. K. D. Sung, J. H. Ann, J. Y. Lee, S. J. Ohh, and H. Y. Lee, Kor. J. Biotechnol. Bioeng., 10, 401 (1995).
  7. M. Kodama, H. Ikemoto, and S. Miyachi, J. Mar. biotechnol., 1, 21 (1993).
  8. Y.-H. Han, J.-S. Lee, J.-K. Kwak, E.-H. Lee, and M.-G. Cho, J. Korean Fish. Soc., 32, 186 (1999).
  9. J.-S. Kim, C.-H. Park, and P.-S. Chung, Kor. J. Obstet Gynecol., 52, 437 (2009).
  10. Y. M. Kim, J.-Y. Kim, S.-M. Lee, J.-M. Ha, T. H. Kwon, and J.-H Lee, Appl. Chem. Eng., 21, 271 (2010).
  11. Y. M. Kim, M.-R. Kim, T. H. Kwon, J.-M. Ha, and J.-H. Lee, J. Korean Ind. Eng. Chem., 20, 285 (2009).
  12. S. Oncel and F. Vardar Sukan, Bio. Technol., 99, 4755 (2008). https://doi.org/10.1016/j.biortech.2007.09.068
  13. T. Matsunaga, H. Takeyama, H. Sudo, N. Oyama, S. Ariura, H. Takano, M. Hirano, J. G. Burgess, K. Sode, and N. Nakamura, Appl. Biochem, Biotechnol., 28, 157 (1991). https://doi.org/10.1007/BF02922597
  14. H. J. Ryu, J.-S. Lee, and K. K. Oh, Korean Journal of Biotechnol. and Bioengineering, 19, 257 (2004).
  15. C.-Y. Park, K.-S. Lim, and W.-H. Baek, Proceedings of the KIEE Conference, 938 (2009).
  16. S.-G. Jung, H.-J. Kim, and H. Kim, Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference, 117 (2009).
  17. J.-H. Chung, S.-G. Song, S.-J. Park, Y.-H. Chang, and C.-J. Moon, The Transactions of the Korean Institute of Power Electronics, 11, 201 (2006).
  18. J. Y. Cho, D. M. Son, J. M. Kim, B. S. Seo, S. Y. Yang, J. H. Bae, and B. G. Heo, Journal of Bio-Environment Control, 17, 116 (2008).
  19. I.-T. Shin, J.-K. Yang, D.-J. Lee, and D.-H. Park, J. Kieeme, 23, 471 (2010).
  20. Y. Cho, Y. K. Choi, and S. H. Sohn, Appl. Phys. Lett., 89, 051102 (2006). https://doi.org/10.1063/1.2244042
  21. J. U. Seo, C. Y. Kim, H. S. Kim, and S. J. Noh, Journal of the Korean Vacuum Society, 12, 235 (2003).
  22. S.-G. Jung, H.-J. Kim, and H. Kim, Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 204 (2009).
  23. K.-W. Chung, Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 18, 1 (2004).
  24. J. F. Cornet, C. G. Dussap, P. Cluzel, and G. Dubertret, Biotechnol. Bioeng., 38, 826 (1992).
  25. K. H. Park, D. I. Kim, and C. G. Lee, Microbiol. Biotechnol., 10, 817 (2000).
  26. E. G. Evers, Biotechnol. Bioeng., 38, 254 (1991). https://doi.org/10.1002/bit.260380307
  27. C.-Y. Wang, C.-C. Fu, and Y.-C. Liu, Biochem., Eng. Journal, 37, 21 (2007). https://doi.org/10.1016/j.bej.2007.03.004
  28. K. Chojnacka and A. Noworyta, Enzyme Microb. Technol., 34, 461 (2004). https://doi.org/10.1016/j.enzmictec.2003.12.002
  29. J. W. Heol, Y. B. Lee, D. E. Kim, Y. S. Chang, and C. H. Chun, Kor. J. Hort. Sci. Technol., 28, 51, (2010).