DOI QR코드

DOI QR Code

Separation of Single-Wall Carbon Nanotubes by Agarose Gel

아가로스 겔을 이용한 단일벽 탄소나노튜브 분리

  • Yu, Lan (Department of Materials Science and Engineering, Myongji University) ;
  • Lim, Yun-Soo (Department of Materials Science and Engineering, Myongji University) ;
  • Han, Jong-Hun (Energy/Nano Materials Research Center, Korea Electronics Technology Institute)
  • 우란 (명지대학교 신소재공학과) ;
  • 임연수 (명지대학교 신소재공학과) ;
  • 한종훈 (전자부품연구원 에너지나노소재연구센터)
  • Received : 2011.03.01
  • Accepted : 2011.04.18
  • Published : 2011.06.10

Abstract

The separation of metallic and semiconducting single-wall carbon nanobubes (SWCNTs) by agarose gel method was carried out in this study. The effect of concentration of agarose, SDS (sodium dodecyl sulfate), and pH in the solution on separation behavior was investigated. With increasing the concentration of agarose in the solution, it showed that the ratio of metallic SWCNTs, which was analyzed from UV-vis-NIR spectroscopy, was increased in the solution phase, while the overall concentration of SWCNTs was decreased. With increasing the concentration of SDS, we could observe that the ratio of metallic SWCNTs was increased due to more affinity between SDS molecules and metallic SWCNT. The highest metallic SWCNTs ratio was reached up to 58.4% when the pH of solution was 8.2.

본 연구는 아가로스 겔을 이용하여 금속성과 반도체성 단일벽 탄소나노튜브의 분리실험을 수행하였다. 아가로스의 농도, 분산제인 SDS (sodium dodecyl sulfate)의 농도, 아가로스 용액의 pH에 따른 단일벽 탄소나노튜브의 분리에 대한 영향을 고찰하였다. UV-vis-NIR 분광 분석으로부터 용액상의 아가로스 농도가 증가함에 따라 원심분리에 의해 추출된 상층부에서 금속성 탄소나노튜브의 비율이 증가하였지만, 분리된 탄소나노튜브의 전체적인 농도는 감소하였다. 분산제인 SDS 농도가 증가할수록 금속성 탄소나노튜브와 SDS와의 화학적 친화성으로 인해 상층부에서 금속성 탄소나노튜브의 비율이 증가하였으며, 아가로스 용액의 pH가 8.2일 때 금속성 탄소나노튜브의 비율이 최대 58.4%까지 증가하였다.

Keywords

Acknowledgement

Grant : 열에너지 조절 가능한 일반건축용 창호시스템 개발

Supported by : 지식경제부, 국토해양부

References

  1. S. Iijima, Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0
  2. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl Phys Lett., 60, 2204 (1992). https://doi.org/10.1063/1.107080
  3. R. B. Weisman and S. M. Bachilo, Nano Lett., 3, 1235 (2003). https://doi.org/10.1021/nl034428i
  4. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science, 297, 787 (2002). https://doi.org/10.1126/science.1060928
  5. S. J. Lee, H. S. Yoo, and S. K. Joo, J. Electron. Mater., 3, 53 (2007).
  6. R. Krupke, F. Hennrich, H. V. Lhoneysen, and M. M. Kappes, Science, 301, 344 (2003). https://doi.org/10.1126/science.1086534
  7. K. Kaamaras, M. E. Itkis, H. Hu, B. Zhao, and R. C. Haddon, Science, 310, 1501 (2003).
  8. D. Chattopadhyay, I. Galeska, and F. Papadimitrakopoulos, J. Am, Chem. Soc., 125, 3370 (2003) https://doi.org/10.1021/ja028599l
  9. Y. Miyata, Y. Maniwa, and H. Kataura, J. Phys. Chem. B., 110, 25 (2006). https://doi.org/10.1021/jp055692y
  10. X. Tu, S. Manohr, A. Jagota, and M. Zheng, Nature, 460, 250 (2009). https://doi.org/10.1038/nature08116
  11. T. Tanaka, H. Jin, Y. Miyata, and H. Kataura, Appl. Phys. Express, 1, 114001 (2008). https://doi.org/10.1143/APEX.1.114001
  12. S. Fujii, T. Tanaka, Y. Miyata, H. Suga, Y. Naitoh, T. Minari, T. Miyadera, K. Tsukagoshi, and H. Kataura, Appl. Phys. Express, 2, 071601 (2009). https://doi.org/10.1143/APEX.2.071601
  13. M. S. Jeong, C. C. Byeon, O. H. Cha, H. Jeong, J. H. Han, Y. C. Choi, K. H. An, K. H. Oh, K. K. Kim, and Y. H. Lee, NANO., 3, 101 (2008). https://doi.org/10.1142/S1793292008000885
  14. J. Narayanan, J. Y. Xiong, and X. Y. Liu, J. Phys. : Conf. Ser., 28, 83 (2006)
  15. T. Tanaka, H. Jin, Y. Miyata, S. Fujii, H. Suga, Y. Naitoh, T. Minari, T. Miyadera, K. Tsukagoshi, and H. Kataura, Nano Lett., 9, 1497 (2009) https://doi.org/10.1021/nl8034866
  16. N. Pernodet, M. Maaloum, and B. Tinland, Electrophoresis, 18, 55 (1997). https://doi.org/10.1002/elps.1150180111
  17. J. Y. Xiong, J. Narayanan, X. Y. Liu, T. K. Chong, S. B. Chen, and T. S. Chung, J. Phys. Chem. B., 109, 5638 (2005). https://doi.org/10.1021/jp044473u
  18. H. Liu, Y. Feng, T. Tanaka, Y. Urabe, and H. Kataura, J. Phys. Chem. C., 114, 9270 (2010).
  19. M. Taka and S. Nakamura, Carbohydr. Res., 180, 277 (1988). https://doi.org/10.1016/0008-6215(88)80084-3