DOI QR코드

DOI QR Code

The Effect of Surface Modification on the Disperisibilities and the Thermal Conductivities of Single-Walled Carbon Nanotube (SWCNT)/Epoxy Composites

표면 기능화된 단일벽 탄소나노튜브/에폭시 복합체의 분산 및 열전도도 특성

  • Kim, Jiwon (Department of Chemical Engineering, Chungang University) ;
  • Im, Hyungu (Department of Chemical Engineering, Chungang University) ;
  • Kim, Jooheon (Department of Chemical Engineering, Chungang University)
  • 김지원 (중앙대학교 공과대학 화학신소재공학부) ;
  • 임현구 (중앙대학교 공과대학 화학신소재공학부) ;
  • 김주헌 (중앙대학교 공과대학 화학신소재공학부)
  • Received : 2011.02.24
  • Accepted : 2011.04.02
  • Published : 2011.06.10

Abstract

Single-walled carbon nanotube (SWCNT)/Epoxy composites were prepared for improving thermal conductivities and dispersion of SWCNTs in the epoxy matrix. Composites obtained different types of SWCNTs which are pristine and functionalized of the SWCNTs by acid and amine treatments. Three types of SWCNTs were dispersed in diglycidyl ether of bisphenol A (DGEBA) and bisphenol F (DGEBF). Enhanced interaction between functional groups on SWCNT and epoxy resins was evidenced by an improvement in the dispersion of the SWCNTs in the epoxy matrix. Thermal conductivity of composites containing acid SWCNTs were found to be much better than those containing pristine and amine treated SWCNTs.

단일벽 탄소나노튜브(single-walled carbon nanotube, SWCNT)의 우수한 열적 특성을 이용하여 에폭시 수지의 열전도도 특성을 향상시키기 위해 SWCNT와 에폭시 수지 복합체를 제작하여 열전도도를 측정하였다. SWCNT에 카보닐기와 아민기를 도입하여 분산도 향상을 유도하였으며 diglycidyl ether of bisphenol A (DGEBA)와 bisphenol F (DGEBF) 두 종류의 에폭시 레진에 각각의 SWCNT를 첨가하여 제작한 복합체들은 파단면 분석을 통하여 분산 특성을 관찰하였다. 각 복합체의 분산도는 표면 처리를 거치면서 생성된 극성분자와 에폭시 간의 상호작용으로 인하여 SWCNT를 첨가한 것이 순수한 SWCNT 복합체와 비교하여 높은 분산성을 나타내었다. SWCNT/에폭시 복합체의 열전도도는 DGEBA와 DGEBF 두 종류의 에폭시에서 산처리한 SWCNT 복합체가 가장 높은 값을 가지는 것으로 측정되었다.

Keywords

Acknowledgement

Supported by : 중소기업청

References

  1. R. S. Bauer, Epoxy Resins Chemistry, American Chemical Society, Washington D.C. (1979).
  2. C. A. May, Epoxy Resins, Marcel Pekker, New York (1988).
  3. H. Lee and N. Kris, Handbook of Epoxy Resins, McGraw-Hill, New York (1982).
  4. L. Matejka, O. Dukh, and J. Kolarik, Polymer, 41, 1449 (2000). https://doi.org/10.1016/S0032-3861(99)00317-1
  5. K. H. Haas and H. Wolter, Curr. Opin. Solid St. M., 4, 571 (1999). https://doi.org/10.1016/S1359-0286(00)00009-7
  6. N. Salahuddin, A. Moet, A. Hiltner, and E. Baer, Eur. Polym. J., 38, 1477 (2002). https://doi.org/10.1016/S0014-3057(02)00015-0
  7. L. Matejka, K. Dusek, J. Plestil, J. Kriz, and F. Lednicky, Polymer, 40, 171 (1998).
  8. B. K. Min, Polymer (Korea), 12, 599 (1988).
  9. L. Matejka, O. Dukh, and J. Kolarik, Polymer, 41, 1449 (2000). https://doi.org/10.1016/S0032-3861(99)00317-1
  10. K. H. Haas and H. Wolter, Curr. Opin. Solid St. M., 4, 571 (1999). https://doi.org/10.1016/S1359-0286(00)00009-7
  11. I. N. Jan, T. M. Lee, K. C. Chiou, and J. J. Lin, Ind. End. Chem. Res., 44, 2086 (2005). https://doi.org/10.1021/ie048934+
  12. P. Richard, T. Prasse, J. Y. Cavaille, L. Chazeau, C. Gauthier, and J. Duchet, Mat. Sci. Eng. A., 352, 344 (2003). https://doi.org/10.1016/S0921-5093(02)00895-X
  13. Y. L. Liu, C. Y. Hsu, W. L. Wei, and R. J. Jeng, Polymer, 44, 5159 (2003). https://doi.org/10.1016/S0032-3861(03)00519-6
  14. J. T. Dickinson, K. H. Nwe, W. P. Hess, and S. C. Langford, Appl. Surf. Sci., 208, 2 (2003).
  15. E. Hamme, X. Tang, M. Trampert, T. Schmitt, K. Mauthner, A. Eder, and P. Potschke, Carbon, 42, 1153 (2004). https://doi.org/10.1016/j.carbon.2003.12.043
  16. W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun, and Q. Xin, Carbon, 40, 791 (2002). https://doi.org/10.1016/S0008-6223(02)00039-8
  17. M Guo, J. Chen, J. Li, B. Tao, and S. Yao, Analytica Chimica Acta, 532, 71 (2005). https://doi.org/10.1016/j.aca.2004.10.045
  18. T.-E. Chang, A. Kisliuk, S. M. Rhodes, W. J. Brittain, and A. P. Sokolov, Polymer, 47, 7740 (2006). https://doi.org/10.1016/j.polymer.2006.09.013
  19. B. Philip, J. K. Abraham, A. Chandrasekhar, and V. K. Varadan, Smart Mater. Struct., 12, 1603 (2005).
  20. J. Xiong, Z. Zheng, X. Qin, M. Li, H. Li, and X. Wang, Carbon, 44, 2701 (2006). https://doi.org/10.1016/j.carbon.2006.04.005
  21. Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. C. Chung, and H. G. Yoon, Carbon, 43, 23 (2005). https://doi.org/10.1016/j.carbon.2004.08.015
  22. A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, Comp. Sci. Technol., 62, 1993 (2002). https://doi.org/10.1016/S0266-3538(02)00129-X
  23. J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, Polymer, 44, 5893 (2003). https://doi.org/10.1016/S0032-3861(03)00539-1
  24. S. E. baker, W. Cai, T. L. Lasseter, K. P. Weidkamp, and R. J. Hamers, Nano Lett., 2, 1413, (2002). https://doi.org/10.1021/nl025729f
  25. D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates, J. Liu, and R. E. Smalley, J. Am. Chem. Soc., 122, 2383 (2002).
  26. H. Ago, T. Kugler, F. Cacialli, W. R. Salaneck, M. S. P. Shaffer, A. H. Windle, and R. H. Friend, J. Phys. Chem. B, 103, 8116 (1999). https://doi.org/10.1021/jp991659y
  27. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, Eden Prairie, MN (1992).
  28. J. Zhu, J. D. Kim, H. Peng, J. L. Margrave, V. N. Khabashesku, and E. V. Barrera, Nano Lett., 3, 1107 (2003). https://doi.org/10.1021/nl0342489
  29. B. Ni, T. Watanabel, and S. R. Phillpot, J. Phys. Condens. Matter, 21, 084219 (2009). https://doi.org/10.1088/0953-8984/21/8/084219
  30. A. Moisala, Q. Li, I. A. Kinloch, and A. H. Windle, Compos. Sci. Tech., 66, 1285 (2006). https://doi.org/10.1016/j.compscitech.2005.10.016
  31. S. Wang, R. Liang, B. Wang, and C. Zhang, Carbon, 47, 53 (2009). https://doi.org/10.1016/j.carbon.2008.08.024
  32. A. Yu, M. E. Itkis, E. Bekyarova, and R. C. Haddon, J. Appl. Phys. Lett., 89, 133102 (2006). https://doi.org/10.1063/1.2357580
  33. M. Pietralla, J. Comput. Aid. Des., 3, 273, (1996). https://doi.org/10.1007/BF01185664
  34. F. H. Gojoy, M. H. G. Wichmann, B. Fiedler, I. A. Kinloch, W. Bauhofer, A. H. Windle, and K. Schute, Polymer, 47, 2036, (2006). https://doi.org/10.1016/j.polymer.2006.01.029