DOI QR코드

DOI QR Code

Characteristics of Electrical Properties, Ozone Generation and Decomposition of Volatile Organic Compounds by Nonthermal Plasma Reactor Packed with SBT Ferroelectric

SBT 강유전체 충전층 저온 플라즈마 반응기의 전기적 특성, 오존생성 및 휘발성유기화합물의 분해

  • Eo, Joon (School of Chemical Engineering & BioEngineering, University of Ulsan) ;
  • Kim, Il Won (Department of Physics, University of Ulsan) ;
  • Park, Jin Do (Department of Environmental & life Chemistry, Ulsan College) ;
  • Lee, Joo Young (Department of Environmental & life Chemistry, Ulsan College) ;
  • Lee, Hak Sung (School of Chemical Engineering & BioEngineering, University of Ulsan)
  • 어준 (울산대학교 생명화학공학부) ;
  • 김일원 (울산대학교 물리학과) ;
  • 박진도 (울산과학대학 환경생활화학과) ;
  • 이주영 (울산과학대학 환경생활화학과) ;
  • 이학성 (울산대학교 생명화학공학부)
  • Received : 2011.02.04
  • Accepted : 2011.03.21
  • Published : 2011.06.10

Abstract

A nonthermal plasma reactor in conjunction with a tubular type with a ferroelectric (high-dielectric ceramic) pellet layer was designed and constructed. $SrBiTaO_9$ (SBT) pellets with 2.0 mm in diameter were held within the tube arrangement by two metal mesh electrodes (20 mm separation) connected to a high-voltage AC power supply. The dielectric constant of SBT pellets was 150 at room temperature and 500 at curie temperature ($335^{\circ}C$). The generation rate of ozone in the plasma reactor almost linearly increased with increasing applied voltage. In the case of the plasma reactor packed with SBT pellets the generation rate of ozone sharply increased at the applied voltage more than 20 kV. The ozone generation rate at the negative corona discharge was higher than that of the positive corona discharge. However, the destruction efficiency of toluene and methylene chloride was not increased in proportion to ozone concentration.

Ferroelectric의 강유전체 소구들을 충전한 원통형의 비열 방전 플라즈마 반응기를 설계 제작하였으며, 강유전체 층방전 구조를 구성하는 평판(20 mm 간격) 금속망 전극 사이에 직경 2.0 mm인 $SrBiTaO_9$ (SBT) 소구들을 위치시키고 고압의 교류 전원을 인가하였다. SBT 소구는 상온($25^{\circ}C$)에서 150, 큐리온도($335^{\circ}C$)에서 500의 유전상수를 가졌다. 플라즈마 반응기에서 오존 생성속도는 거의 인가전압의 증가에 비례하였으며, SBT 소구들이 충전된 경우, 20 kV 이상의 인가전압에서 오존 생성속도는 급격하게 증가하였다. 부코로나 방전에서 오존 생성속도가 정코로나 방전에서의 경우보다 높았다. 그러나 톨루엔 및 메틸렌클로라이드의 분해율은 생성된 오존 농도에 비례하여 증가하지 않았다.

Keywords

Acknowledgement

Supported by : 울산지역환경기술개발센터

References

  1. Y. H. Song, J. Korean Ind. Eng. Chem., 17, 1 (2006).
  2. H. H. Kim, A. Ogata, and S. Futamura, J. Phys. D: Appl. Phys., 38, 1292 (2005). https://doi.org/10.1088/0022-3727/38/8/029
  3. T. Hammer and S. Broer, Plasma enhanced selective catalytic reduction of NOx for diesel cars, SAE 982,428 (1998).
  4. J. D. Moon and S. T. Geum, IEEE Trans. on Ind. Appl., 34, 1206 (1998). https://doi.org/10.1109/28.738975
  5. D. Evans, J. J. Coogan, G. K. Anderson, L. A. Rosocha, and M. J. Kushner, J. Appl. Phys., 74, 5378 (1993). https://doi.org/10.1063/1.354241
  6. P. M. Castle, I. E. Kanter, P. K. Lee, and L. E. Kline, Westinghouse Corp. Final Report, Contract DAAA 09-82-C-5396 (1984).
  7. T. Yamamoto, P. A. Lawless, and L. E. Sparks, IEEE Trans. on Ind. Appl., 24, 934 (1988). https://doi.org/10.1109/28.9001
  8. T. Yamamoto, P. A. Lawless, and L. E. Sparks, IEEE Trans. on Ind. Appl., 25, 743 (1989). https://doi.org/10.1109/28.31257
  9. I. W. Kim, Plasma technology for the romoval of VOCs of Ulsan petrochemical complex, URETDC (2000).
  10. J. F. Scott, Ferroelectric Memories, Springer, Berlin (2000).
  11. C. M. Nunez, G. H. Ramsey, W. H. Ponder, J. H. Abbott, L. E. Hamel, and P. H. Kariher, J. Air & Waste Manag. Assoc., 43, 242 (1993).
  12. A. Ogata, D. Ito, K. Mizuno, S. Kushiyama, A. Gal, and T. Yamamoto, Appl. Catal. A, 236, 9 (2002). https://doi.org/10.1016/S0926-860X(02)00280-6
  13. A. Koutsospyros, S. M. Yin, C. Christodoulatos, and K. Becker, Int. J. Mass Spectrom., 233, 305 (2004). https://doi.org/10.1016/j.ijms.2003.12.033
  14. H. H. Kim, S. M. Oh, A. Ogata, and S. Futamura, Appl. Catal. B, 56, 213 (2005). https://doi.org/10.1016/j.apcatb.2004.09.008