DOI QR코드

DOI QR Code

낙동강 유역 환경유량에 대한 기후변화의 영향 분석

An Analysis of the Effect of Climate Change on Nakdong River Environmental Flow

  • 이아연 (부경대학교 환경공학과) ;
  • 김상단 (부경대학교 환경공학과)
  • Lee, A Yeon (Department of Environmental Engineering, Pukyong National University) ;
  • Kim, Sangdan (Department of Environmental Engineering, Pukyong National University)
  • 투고 : 2011.01.12
  • 심사 : 2011.04.20
  • 발행 : 2011.05.30

초록

This study describes the modeling of climate change impact on runoff across southeast Korea using a conceptual rainfall-runoff model TANK and assesses the results using the concept of environmental flows developed by International Water Management Institute. The future climate time series is obtained by scaling the historical series, informed by 4 global climate models and 3 greenhouse gas emission scenarios, to reflect a $4.0^{\circ}C$ increase at most in average surface air temperature and 31.7% increase at most in annual precipitation, using the spatio-temporal changing factor method that considers changes in the future mean seasonal rainfall and potential evapotranspiration as well as in the daily rainfall distribution. Although the simulation results from different global circulation models and greenhouse emission scenarios indicate different responses in flows to the climate change, the majority of the modeling results show that there will be more runoff in southeast Korea in the future. However, there is substantial uncertainty, with the results ranging from a 5.82% decrease to a 48.15% increase in the mean annual runoff averaged across the study area according to the corresponding climate change scenarios. We then assess the hydrologic perturbations based on the comparison between present and future flow duration curves suggested by IMWI. As a result, the effect of hydrologic perturbation on aquatic ecosystems may be significant at several locations of the Nakdong river main stream in dry season.

키워드

과제정보

연구 과제번호 : 2010년 녹색성장정책연구(기후변화를 고려한 환경유량 산정 및 물환경 적응방안)

연구 과제 주관 기관 : 기후 과학연구관리단, 한국환경정책. 평가연구원

참고문헌

  1. 건설교통부(2007). 자연사회환경 개선을 위한 하천 유지유량 산정방안 연구보고서.
  2. 김문성, 고익환, 김상단(2009a). CGCM의 미래 기후 정보를 이용한 기후변화가 낙동강 유역 유황에 미치는 영향 분석. 수질보전 한국물환경학회지, 25(6), pp. 863-871.
  3. 김문성, 신현석, 박주현, 김상단(2009b). 낙동강 오염총량관리 단위유역 유달율 경험공식. 수질보전 한국물환경학회지, 25(4), pp. 581-589.
  4. 김재철, 김상단(2007). 오염총량관리 유량측정자료를 이용한 낙동강 유역 유황분석. 수질보전 한국물환경학회지, 23(3), pp. 332-338.
  5. 김주철, 최용준(2010). 수문학적 접근법에 의한 환경유량 산정기법의 적용성 평가. 수질보전 한국물환경학회지, 26(2), pp. 208-214.
  6. 최대규, 김문성, 김남원, 김상단(2009). CGCM 미래기후정보를 이용한 기후변화가 병성천 유역 수문 및 수질반응에 미치는 영향분석. 한국수자원학회논문집, 42, pp. 921-931.
  7. 최대규, 이진희, 조덕준, 김상단(2010). 우리나라 기후 재현성을 중심으로 한 GCMs 평가. 수질보전 한국물환경학회지, 26(3), pp. 482-490.
  8. 한수희, 신현석, 김상단(2007). 낙동강 유역관리를 위한 부하량 유황곡선의 적용 가능성. 수질보전 한국물환경학회지, 23(5), pp. 620-627.
  9. 한수희, 유가영, 김상단(2009). 식생 물 부족지수의 추계학적 거동과 기후변화가 그에 미치는 영향. 수질보전 한국물환경학회지, 25(3), pp. 375-385.
  10. California Climate Change Center (2009). Using future climate projections to support water resources decision making in California. California Department of Water Resources.
  11. Choi, D., Jun, H., Shin, H. S., Yoon, Y. S., and Kim, S. (2010). The effect of climate change on Byeongseong stream's water quantity and quality. Desalination and Water Treatment, 19, pp. 105-112. https://doi.org/10.5004/dwt.2010.1902
  12. Dingman, S. L. (2002). Physical Hydrology 2nd ed., Prentice Hall, New Jersey.
  13. Giorgi, F. and Mearns, L. O. (1991). Approaches to the simulation of regional climate change: a review. Reviews of Geophysics, 29, pp. 191-216. https://doi.org/10.1029/90RG02636
  14. Han, S., Shin, H. S., and Kim, S. (2009). Temporal downscaling for hourly rainfall time series using correlated Neyman-Scott rectangular pulse point rainfall model, KSCE Jounal of Civil Engineering, 13, pp. 463-469. https://doi.org/10.1007/s12205-009-0463-3
  15. Jones, G. (2002). Setting environmental flows to sustain a healthy working river. Watershed Feburary 2002, Cooperative Research Center for Freshwater Ecology, Canberra, http://freshwater.canberra.edu.au/.
  16. Najjar, R. G. (1999). The water balance of the Susquehanna river basin and its response to climate change. Journal of Hydrology, 219, pp. 7-19. https://doi.org/10.1016/S0022-1694(99)00041-4
  17. Nash, J. E. and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part 1-A discussion of principles. Journal of Hydrology, 10(3), pp. 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  18. Smakhtin, V. U. and Anputhas, M. (2006). An assessment of environmental flows and implications for Indian river basisn. IWMI Research Report 107, International Water Management Institute, Colombo, Sri Lanka.
  19. Smakhtin, V. U. and Eriyagama, N. (2008). Developing a software package for global desktop assessment of environmental flows. Environmental Modelling & Software, doi; 10.1016/j.evnsoft.2008.04.002/.
  20. Stonefelt, M. D., Fontaine, T. A., and Hotchkiss, R. H. (2000). Impacts of climate change on water yield in the upper wind river basin. Journal of American Water Resources Association, 36(2), pp. 321-336. https://doi.org/10.1111/j.1752-1688.2000.tb04271.x
  21. Tennant, R. E. (1976). Instream flow regimes for fish, wild life, recreation and related environmental resources. Fisheries, 1, pp. 6-10. https://doi.org/10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2
  22. Varanou, E. E., Ckouvatsou, E. B., and Mimikou, M. (2002). Quantity and quality intergrated catchment modeling under climatic change with use of soil and water assessment tool model. J. Hydr. Eng., 7(3), pp. 228-244. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:3(228)
  23. Vogel, R. M. and Fenessey, N. M. (1994). Flow-duration curves, 1:New interpretation and confidence intervals. Journal of Water Resources Planning and Management, ASCE, 120(4), pp. 485-504. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(485)
  24. Wilby, R. L. and Wigley, T. M. L. (1997). Downscaling general circulation model output: a review of methods and limitations. Progress in Physical Geography, 21, pp. 530-548.