DOI QR코드

DOI QR Code

Physical Properties of Insulating Composite Materials Using Natural Cellulose and Porous Ceramic Balls as a Core Materials

천연섬유질과 다공성 세라믹볼을 심재로 사용한 복합단열재의 물성

  • Hwang, Eui-Hwan (Department of Chemical Engineering, Kongju National University) ;
  • Cho, Soung-Jun (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Man (Department of Architecture, Kongju National University)
  • Received : 2011.07.25
  • Accepted : 2011.08.16
  • Published : 2011.10.10

Abstract

To develop environmental-friendly insulating composite materials, natural cellulose and porous ceramic balls were used as core materials and activated Hwangtoh was used as a binder. Various specimens were prepared with different water/binder ratios and core material/binder ratios. The physical properties of these specimens were then investigated through compressive strengths, flexural strengths, absorption test, hot water resistance test, pore analysis, thermal conductivity, and observation of micro-structures using scanning electron microscope. Results showed that the maximum compressive strength varied appreciably with the water/binder ratios and core material/binder ratios, but the flexural strength increased with the core material/binder ratios regardless of water/binder ratios. The compressive strength and the flexural strength measured after the hot water resistance test decreased remarkably compared to those measured before test. The pore analysis measured after the hot water resistance test showed that total pore volume, porosity and average pore diameter decreased, while bulk density increased by the acceleration of hydration reaction of binder in the hot water. The thermal conductivity decreased gradually with an increase of core material/binder ratios. It can be evaluated that the composite insulation materials having good insulating properties and mechanical strengths can be used in the field.

친환경 복합단열재를 개발하기 위하여 천연섬유질과 다공성 세라믹볼을 심재로, 활성황토를 결합재로 사용하였다. 물/결합재비 및 심재/결합재비를 다양하게 변화시켜 공시체를 제작하였으며, 공시체의 제 물성을 조사하기 위하여 압축강도, 휨강도, 흡수성, 내열수성, 세공분석, 열전도율 및 SEM에 의한 미세조직 관찰을 실시하였다. 그 결과 최대 압축강도는 물/결합재비와 심재/결합재비에 따라 다양하게 나타났으나 휨강도는 심재/결합재비가 증가될수록 물/결합재비에 관계없이 높게 나타났다. 내열수성시험 후에 측정한 압축 및 휨강도는 내열수성시험 전에 측정한 값에 비하여 압축 및 휨강도 모두 현저하게 저하되었다. 내열수성시험 후에 측정한 세공분석에서 결합재의 수화반응이 촉진됨으로서 세공의 평균직경, 총세공량 및 공극률은 감소되었으나 밀도는 증가되었다. 열전도율은 심재/결합재비가 증가될수록 낮아졌다. 복합단열재의 단열성과 기계적강도가 우수하여 실용화에 문제가 없는 것으로 평가되었다.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. D. K. Kim and S. B. Lee, J. Korean Ind. Eng. Chem., 17, 357 (2006).
  2. J. H. Jeong, J. U. Kim, and J. G Jeong, J. Korean Soc. Living Environ. Sys., 13, 320 (2006).
  3. H. H. Liang and M. C. Ho, Constr. Build. Mater., 21, 1254 (2007). https://doi.org/10.1016/j.conbuildmat.2006.05.051
  4. K. Al Rim, A. Ledhem, O. Douzane, R. M. Dheilly, and M. Queneudec, Cem. Concr. Compos., 21, 269 (1999). https://doi.org/10.1016/S0958-9465(99)00008-6
  5. J. Khedari, B. Suttisonk, N. Pratinthong, and J. Hirunlabh, Cem. Concr. Compos., 23, 65 (2001). https://doi.org/10.1016/S0958-9465(00)00072-X
  6. A. Bouguerra, A. Ledhem, F. de Barquin, R. M. Dheilly, and M. Queneudec, Cem. Concr. Res., 28, 1179 (1998). https://doi.org/10.1016/S0008-8846(98)00075-1
  7. H. Binici, O. Aksogan, M. N. Bbodur, E. Akca, and S. Kapur, Constr. Build. Mater., 21, 901 (2007). https://doi.org/10.1016/j.conbuildmat.2005.11.004
  8. P. Coatanlem, R. Jauberthie, and F. Rendell, Constr. Build. Mater., 20, 776 (2006). https://doi.org/10.1016/j.conbuildmat.2005.01.057
  9. M. Bederina, B. Laidoudi, A. Goullieux, M. M. Khenfer, A. Bali, and M. Queneudec, Constr. Build. Mater., 23, 1311 (2009). https://doi.org/10.1016/j.conbuildmat.2008.07.029
  10. M. Bederina, L. Marmoret, K. Mezreb, M. M. Khenfer, A. Bali, and M. Queneudec, Constr. Build. Mater., 21, 662 (2007). https://doi.org/10.1016/j.conbuildmat.2005.12.008
  11. A. Ledhem, R. M. Dheilly, M. L. Benmalek, and M. Queneudec, Constr. Build. Mater., 14, 341 (2000). https://doi.org/10.1016/S0950-0618(00)00037-4
  12. C. Asasutjarit, J. Hirunlabh, J. Khedari, S. Charoenvai, B. Zeghmati, and U. Cheul Shin, Constr. Build. Mater., 21, 277 (2007). https://doi.org/10.1016/j.conbuildmat.2005.08.028
  13. K. Gunasekaran, P. S. Kumar, and M. Lakshmipathy, Constr. Build. Mater., 25, 92 (2011). https://doi.org/10.1016/j.conbuildmat.2010.06.053
  14. V. K. Mathur, Constr. Build. Mater., 20, 470 (2006). https://doi.org/10.1016/j.conbuildmat.2005.01.031
  15. S. H. Lee, J. Korea Concr. Inst., 14, 742 (2002). https://doi.org/10.4334/JKCI.2002.14.5.742
  16. S. A. Lee, C. W. Jung, W. J. Kim, and J. H. Ahn, J. Korea Concr. Inst., 21, 745 (2009). https://doi.org/10.4334/JKCI.2009.21.6.745
  17. M. R. Jones and A. McCarthy, Cem. Concr. Res., 36, 1032 (2006). https://doi.org/10.1016/j.cemconres.2006.01.011
  18. M. S. Goual, A. Bali, F. de Barquin, R. M. Dheilly, and M. Queneudec, Cem. Concr. Res., 36, 1768 (2006). https://doi.org/10.1016/j.cemconres.2005.12.017
  19. N. Narayanan and K. Ramamurthy, Cem. Concr. Compos., 22, 321 (2000). https://doi.org/10.1016/S0958-9465(00)00016-0
  20. E. Aamr-Daya, T. Langlet, A, Benazzouk, and M. Queneudec, Cem. Concr. Compos., 30, 957 (2008). https://doi.org/10.1016/j.cemconcomp.2008.06.002
  21. K. J. Byun, H. W. Song, and S. S. Park, Intern. Cong. Polym. Concr., ed. Franco Sandrolini, 9, 99, Bologna, Italy (1998).
  22. H. Binici, O. Aksogan, D. Bakbak, H. Kaplan, and B. Isik, Constr. Build. Mater., 23, 1035 (2009). https://doi.org/10.1016/j.conbuildmat.2008.05.008
  23. S. S. Kang, S. L. Lee, H. Z. Hwang, and M. C. Cho, J. Korea Concr. Inst., 20, 549 (2008). https://doi.org/10.4334/JKCI.2008.20.5.549
  24. H. Y. Choi, M. H. Kim, M. H. Kim, H. Z. Hwang, and S. W. Choi, J. Korea Concr. Inst., 13, 123 (2001).
  25. S. B. Kim, J. W. Nam, N. H. Yi, J. H. Kim, and H. S. Choi, J. Korea Concr. Inst., 20, 619 (2008). https://doi.org/10.4334/JKCI.2008.20.5.619
  26. M. L. Torres and P. A. Garcia-Ruiz, Cem. Concr. Compos., 31, 114 (2009). https://doi.org/10.1016/j.cemconcomp.2008.11.003
  27. E. H. Hwang, Y. S. Ko, J. M. Kim, and T. S. Hwang, J. Korean Ind. Eng. Chem., 15, 628 (2009). https://doi.org/10.1016/j.jiec.2009.09.033