DOI QR코드

DOI QR Code

Cord Blood Adiponectin and Insulin-like Growth Factor-I in Term Neonates of Gestational Diabetes Mellitus Mothers: Relationship to Fetal Growth

  • Sohn, Jin-A (Department of Pediatrics, Ewha Womans University School of Medicine) ;
  • Park, Eun-Ae (Department of Pediatrics, Ewha Womans University School of Medicine) ;
  • Cho, Su-Jin (Department of Pediatrics, Ewha Womans University School of Medicine) ;
  • Kim, Young-Ju (Department of Obstetrics, Ewha Womans University School of Medicine) ;
  • Park, Hye-Sook (Department of Preventive Medicine, Ewha Womans University School of Medicine)
  • Published : 2011.05.31

Abstract

Purpose: The purpose of this study was to evaluate the relationship between cord blood adiponectin and insulin-like growth factor (IGF)-I and their effect on fetal growth and insulin resistance in mothers with gestational diabetes mellitus (GDM). Methods: Cord blood adiponectin and IGF-I were compared between mothers with GDM (GDM group, N=53) and controls (non-GDM group, N=101). Neonates were classified into three groups of small for gestational age (SGA, N=26), appropriate for gestational age (AGA, N=97), and large for gestational age (LGA, N=31) by birth weight. The association between cord adiponectin and IGF-I levels was evaluated in relation to maternal and neonatal clinical data. Results: Cord adiponectin was lower in the GDM group than in the non-GDM group (P<0.001). There was no significant difference in cord adiponectin among the SGA, AGA, and LGA groups in the GDM group (P=0.228). The cord adiponectin of AGA in the GDM group was significantly lower than that in the non-GDM group (P<0.001). The most powerful predictor affecting cord adiponectin was the result of maternal 75 g oral glucose tolerance test. The cord IGF-I values between the GDM group and the non-GDM group were not different (P=0.834). Neonates with the heavier birth weight had the higher cord IGF-I levels. The most powerful predictor affecting cord IGF-I was birth weight and the next was maternal parity. Conclusion: Both cord blood adiponectin and IGF-I were associated with fetal growth, but IGF-I was a more general and direct factor affecting fetal body size, and adiponectin seemed to have more association with insulin sensitivity than growth.

목적: 임신성 당뇨는 임신의 흔한 합병증 중의 하나이며 임신 성 당뇨 산모의 아기는 정상 산모의 아기에 비해서 체지방률이 높다. Adiponectin은 인슐린 민감성 조직에서 당과 지방 대사를 조절하는 중요한 물질이며, insulin-like growth factor(IGF)-I은 출생 전후기에 성장을 조절하는 중요한 내분비 조절물질로 알려져 있다. 본 연구에서는 임신성 당뇨 산모의 아기에서 제대혈 adiponectin과 IGF-I 수치와 태아 성장과의 관계 및 인슐린 저항성에 대해서 알아보고자 하였다. 방법: 임신성 당뇨 이외에 임신과 관련된 기타 합병증이 동반되지 않은 산모에서 태어난 아기(임신성 당뇨군, N=53)와 정상산모에서 태어난 아기(대조군, N=101)의 제대혈 adiponectin과 IGF-I 수치를 비교하였다. 신생아는 출생 체중에 따라 부당경량아(N=26), 적정체중아(N=97), 부당중량아(N=31)로 세분하였다. 제대혈 adiponectin, IGF-I 농도와 산모의 나이, 분만력, 임신 전 체질량지수, 공복 혈당 및 75 g 경구당부하검사, 임신 중산모 체중 증가, 태아-태반 무게비, 출생시 재태연령, 아기의 성별, 출생체중, 출생신장과의 관계를 비교하였다. 결과: 대조군보다 임신성 당뇨군에서 제대혈 adiponectin의평균이 의미 있게 낮았다(P<0.001). 임신성 당뇨군에서는 부당경량아군, 적정체중아군, 부당중량아군 사이의 제대혈 adiponectin 수치에 유의한 차이를 보이지 않았으나(P=0.228),적정체중아군은 대조군의 적정체중아군에 비해 의미 있게 낮은 adiponectin 수치를 보였다(P<0.001). 제대혈 adiponectin은 산모의 임신 전 체질량지수, 공복혈당, 75 g 경부당부하검사와 음의 상관관계를 가졌고, 출생시 재태연령, 출생체중, 제대혈 IGF-I과 양의 상관관계를 가졌다. 다중선형회귀분석에서 75 g 경부당부하검사가 가장 강력한 예측인자로 나왔다. 임신성 당뇨군과 대조군 사이의 제대혈 IGF-I은 의미 있는 차이를 보이지 않았다(P=0.834). 제대혈 IGF-I은 출생체중이 높은 군일수록 의미 있게 높았다(P<0.001). 제대혈 IGF-I은 산모의 연령, 분만력, 출생체중, 출생신장, 제대혈 adiponectin과 유의한 양의 상관관계를 보였고, 이 중에서 출생체중과 분만력이 가장 강력한 예측인자였다. 결론: 산모의 임신성 당뇨는 제대혈 adiponectin을 낮춘다. 제대혈 adiponectin과 IGF-I 모두 출생체중과 연관성을 보였지만 IGF-I이 태아의 성장에 좀 더 직접적인 영향을 미치며, adiponectin은 성장보다는 인슐린 저항성과 더 연관이 있는 것으로 생각된다. 그러므로 임신성 당뇨를 가진 산모에서 태어난 아기는 적정체중아일지라도 생후 성장과 인슐린 저항성의 변화를 추적 관찰하는 것이 중요할 것이다.

Keywords

References

  1. American Diabetes Association. Gestational diabetes mellitus. Diabetes Care 2003;26 Suppl 1:S103-5.
  2. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001;86:1930-5. https://doi.org/10.1210/jc.86.5.1930
  3. Christou H, Connors JM, Ziotopoulou M, Hatzidakis V, Papathanassoglou E, Ringer SA, et al. Cord blood leptin and insulin-like growth factor levels are independent predictors of fetal growth. J Clin Endocrinol Metab 2001;86:935-8. https://doi.org/10.1210/jc.86.2.935
  4. Corbetta S, Bulfamante G, Cortelazzi D, Barresi V, Cetin I, Mantovani G, et al. Adiponectin expression in human fetal tissues during mid- and late gestation. J Clin Endocrinol Metab 2005;90:2397- 402. https://doi.org/10.1210/jc.2004-1553
  5. Mazaki-Tovi S, Kanety H, Sivan E. Adiponectin and human pregnancy. Curr Diab Rep 2005;5:278-81. https://doi.org/10.1007/s11892-005-0023-2
  6. Sivan E, Mazaki-Tovi S, Pariente C, Efraty Y, Schiff E, Hemi R, et al. Adiponectin in human cord blood: relation to fetal birth weight and gender. J Clin Endocrinol Metab 2003;88:5656-60. https://doi.org/10.1210/jc.2003-031174
  7. Tsai PJ, Yu CH, Hsu SP, Lee YH, Chiou CH, Hsu YW, et al. Cord plasma concentrations of adiponectin and leptin in healthy term neonates: positive correlation with birthweight and neonatal adiposity. Clin Endocrinol (Oxf) 2004;61:88-93. https://doi.org/10.1111/j.1365-2265.2004.02057.x
  8. Retnakaran R, Hanley AJ, Raif N, Connelly PW, Sermer M, Zinman B. Reduced adiponectin concentration in women with gestational diabetes: a potential factor in progression to type 2 diabetes. Diabetes Care 2004;27:799-800. https://doi.org/10.2337/diacare.27.3.799
  9. Williams MA, Qiu C, Muy-Rivera M, Vadachkoria S, Song T, Luthy DA. Plasma adiponectin concentrations in early pregnancy and subsequent risk of gestational diabetes mellitus. J Clin Endocrinol Metab 2004;89:2306-11. https://doi.org/10.1210/jc.2003-031201
  10. Lee JJ, Park CG, Lee KS. Birth weight distribution by gestational age in Korean population: using finite mixture modle. Korean J Pediatr 2005;48:1179-86.
  11. Casey BM, Lucas MJ, McIntire DD, Leveno KJ. Pregnancy outcomes in women with gestational diabetes compared with the general obstetric population. Obstet Gynecol 1997;90:869-73. https://doi.org/10.1016/S0029-7844(97)00542-5
  12. Di Cianni G, Miccoli R, Volpe L, Lencioni C, Del Prato S. Intermediate metabolism in normal pregnancy and in gestational diabetes. Diabetes Metab Res Rev 2003;19:259-70. https://doi.org/10.1002/dmrr.390
  13. Dang K, Homko C, Reece EA. Factors associated with fetal macrosomia in offspring of gestational diabetic women. J Matern Fetal Med 2000;9:114-7.
  14. Weiss PA, Scholz HS, Haas J, Tamussino KF, Seissler J, Borkenstein MH. Long-term follow-up of infants of mothers with type 1 diabetes: evidence for hereditary and nonhereditary transmission of diabetes and precursors. Diabetes Care 2000;23:905-11. https://doi.org/10.2337/diacare.23.7.905
  15. Buchanan TA, Xiang AH. Gestational diabetes mellitus. J Clin Invest 2005;115:485-91.
  16. Catalano PM, Kirwan JP, Haugel-de Mouzon S, King J. Gestational diabetes and insulin resistance: role in short- and long-term implications for mother and fetus. J Nutr 2003;133:1674S-83S.
  17. Qiu C, Williams MA, Vadachkoria S, Frederick IO, Luthy DA. Increased maternal plasma leptin in early pregnancy and risk of gestational diabetes mellitus. Obstet Gynecol 2004;103:519-25. https://doi.org/10.1097/01.AOG.0000113621.53602.7a
  18. Winkler G, Cseh K, Baranyi E, Melczer Z, Speer G, Hajos P, et al. Tumor necrosis factor system in insulin resistance in gestational diabetes. Diabetes Res Clin Pract 2002;56:93-9. https://doi.org/10.1016/S0168-8227(01)00355-2
  19. Retnakaran R, Hanley AJ, Raif N, Connelly PW, Sermer M, Zinman B. C-reactive protein and gestational diabetes: the central role of maternal obesity. J Clin Endocrinol Metab 2003;88:3507-12. https://doi.org/10.1210/jc.2003-030186
  20. Tiikkainen M, Tamminen M, Hakkinen AM, Bergholm R, Vehkavaara S, Halavaara J, et al. Liver-fat accumulation and insulin resistance in obese women with previous gestational diabetes. Obes Res 2002;10:859-67. https://doi.org/10.1038/oby.2002.118
  21. Kautzky-Willer A, Krssak M, Winzer C, Pacini G, Tura A, Farhan S, et al. Increased intramyocellular lipid concentration identifies impaired glucose metabolism in women with previous gestational diabetes. Diabetes 2003;52:244-51.
  22. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999;257:79-83. https://doi.org/10.1006/bbrc.1999.0255
  23. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 2001;86:3815-9. https://doi.org/10.1210/jc.86.8.3815
  24. Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 2001;103: 1057-63. https://doi.org/10.1161/01.CIR.103.8.1057
  25. Haluzik M. Adiponectin and its potential in the treatment of obesity, diabetes and insulin resistance. Curr Opin Investig Drugs 2005;6: 988-93.
  26. Meier U, Gressner AM. Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem 2004;50:1511-25. https://doi.org/10.1373/clinchem.2004.032482
  27. Ong KK, Frystyk J, Flyvbjerg A, Petry CJ, Ness A, Dunger DB. Sexdiscordant associations with adiponectin levels and lipid profiles in children. Diabetes 2006;55:1337-41. https://doi.org/10.2337/db05-1272
  28. Jaquet D, Deghmoun S, Chevenne D, Czernichow P, Levy-Marchal C. Low serum adiponectin levels in subjects born small for gestational age: impact on insulin sensitivity. Int J Obes (Lond) 2006; 30:83-7. https://doi.org/10.1038/sj.ijo.0803106
  29. Newsome CA, Shiell AW, Fall CH, Phillips DI, Shier R, Law CM. Is birth weight related to later glucose and insulin metabolism?--A systematic review. Diabet Med 2003;20:339-48. https://doi.org/10.1046/j.1464-5491.2003.00871.x
  30. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, et al. Proteolytic cleavage product of 30-kDa adipocyte complement- related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A 2001;98:2005- 10.
  31. Giudice LC. Insulin-like growth factors and ovarian follicular development. Endocr Rev 1992;13:641-69.
  32. Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (IGF-I) and type 1 IGF receptor (IGF1R). Cell 1993;75:59- 72.
  33. DeChiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 1990;345:78-80. https://doi.org/10.1038/345078a0
  34. Giudice LC, de Zegher F, Gargosky SE, Dsupin BA, de las Fuentes L, Crystal RA, et al. Insulin-like growth factors and their binding proteins in the term and preterm human fetus and neonate with normal and extremes of intrauterine growth. J Clin Endocrinol Metab 1995;80:1548-55. https://doi.org/10.1210/jc.80.5.1548
  35. Wiznitzer A, Reece EA, Homko C, Furman B, Mazor M, Levy J. Insulin-like growth factors, their binding proteins, and fetal macrosomia in offspring of nondiabetic pregnant women. Am J Perinatol 1998;15:23-8. https://doi.org/10.1055/s-2007-993893
  36. Nieto-Diaz A, Villar J, Matorras-Weinig R, Valenzuela-Ruìz P. Intrauterine growth retardation at term: association between anthropometric and endocrine parameters. Acta Obstet Gynecol Scand 1996;75:127-31. https://doi.org/10.3109/00016349609033303
  37. Stefan N, Vozarova B, Funahashi T, Matsuzawa Y, Weyer C, Lindsay RS, et al. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes 2002;51:1884-8. https://doi.org/10.2337/diabetes.51.6.1884
  38. Brakenhielm E, Veitonmaki N, Cao R, Kihara S, Matsuzawa Y, Zhivotovsky B, et al. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci U S A 2004;101:2476-81. https://doi.org/10.1073/pnas.0308671100
  39. Mantzoros C, Petridou E, Alexe DM, Skalkidou A, Dessypris N, Papathoma E, et al. Serum adiponectin concentrations in relation to maternal and perinatal characteristics in newborns. Eur J Endocrinol 2004;151:741-6. https://doi.org/10.1530/eje.0.1510741
  40. Cianfarani S, Martinez C, Maiorana A, Scire G, Spadoni GL, Boemi S. Adiponectin levels are reduced in children born small for gestational age and are inversely related to postnatal catch-up growth. J Clin Endocrinol Metab 2004;89:1346-51. https://doi.org/10.1210/jc.2003-031704
  41. Mazaki-Tovi S, Kanety H, Pariente C, Hemi R, Schiff E, Sivan E. Cord blood adiponectin in large-for-gestational age newborns. Am J Obstet Gynecol 2005;193:1238-42. https://doi.org/10.1016/j.ajog.2005.05.049