DOI QR코드

DOI QR Code

A NUMERICAL METHOD FOR SOLVING ALLEN-CAHN EQUATION

  • Received : 2010.06.18
  • Accepted : 2010.10.30
  • Published : 2011.09.30

Abstract

We propose a numerical method for solving Allen-Cahn equation, in both one-dimensional and two-dimensional cases. The new scheme that is explicit, stable, and easy to compute is obtained and the proposed method provides a straightforward and effective way for nonlinear evolution equations.

Keywords

References

  1. D. Chan and J.S. Pang, The generalized quasi variational inequality problems, Math. Oper. Research 7 (1982), 211-222. https://doi.org/10.1287/moor.7.2.211
  2. S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. 27 (1979), 1085-1095. https://doi.org/10.1016/0001-6160(79)90196-2
  3. M. Ben.e, V. Chalupecky and K. Mikula, Geometrical image segmentation by the AllenCahn equation, Appl. Numer. Math. 51 (2004), 187-205. https://doi.org/10.1016/j.apnum.2004.05.001
  4. J.A. Dobrosotskaya and A.L. Bertozzi, A wavelet-laplace variational technique for image deconvolution and inpainting, IEEE Trans. Image Process. 17 (2008), 657-663.
  5. X.B. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numer. Math. 94 (2003), 33-65. https://doi.org/10.1007/s00211-002-0413-1
  6. A.A. Wheeler, W.J. Boettinger and G.B. McFadden, Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A 45 (1992), 7424-7439. https://doi.org/10.1103/PhysRevA.45.7424
  7. L.Q. Chen, Phase-field models for microstructure evolution, Ann. Rev. Mater. Res. 32 (2002), 113-140. https://doi.org/10.1146/annurev.matsci.32.112001.132041
  8. X.F. Chen, C.M. Elliott, A. Gardiner and J.J. Zhao, Convergence of numerical solutions to the Allen-Cahn equation, Appl. Anal. 69 (1998), 47-56.
  9. J.W. Choi, H.G. Lee, D. Jeong and J. Kim, An unconditionally gradient stable numerical method for solving the Allen-Cahn equation, Physica A 388 (2009), 1791-1803. https://doi.org/10.1016/j.physa.2009.01.026
  10. X.B. Feng and H.J. Wu, A posteriori error estimates and an adaptive finite element method for the Allen-Cahn equation and the mean curvature flow, J. Sci. Comput. 24 (2005), 121- 146. https://doi.org/10.1007/s10915-004-4610-1
  11. J. Zhang and Q. Du, Numerical studies of discrete approximations to the Allen-Cahn equation in the sharp interface limit, SIAM J. Sci. Comput. 31 (2009), 3042-3063. https://doi.org/10.1137/080738398
  12. P.W. Bates, S. Brown and J.L. Han, Numerical analysis for a nonlocal Allen-Cahn equa- tion, Int. J. Numer. Anal. Model. 6 (2009), 33-49.
  13. X.F. Yang, Error analysis of stabilized semi-implicit method of Allen-Cahn equation, Discrete Contin. Dyn. Syst.-Ser. B 11 (2009), 1057-1070.
  14. D. Kessler, R.H. Nochetto and A. Schmidt, A posteriori error control for the Allen-Cahn problem: Circumventing Gronwall's inequality, ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer. 38 (2004), 129-142. https://doi.org/10.1051/m2an:2004006
  15. A. Abduwali, M. Sakakihara and H. Niki, A local Crank-Nicolson method for solving the heat equation, Hiroshima Math. J. 24 (1994), 1-13.
  16. A. Abduwali, A corrector local C-N method for the two-dimensional heat equation, Math. Numer. Sin. 19 (1997), 267-276 (in Chinese).
  17. B.N. Lu, The global Dufort-Frankel difference approximation for nonlinear reactiondiffusion equations, J. Comput. Math. 16 (1998), 275-255.