J. Appl. Math. & Informatics Vol. 29(2011), No. 5 - 6, pp. 1477 - 1487
Website: http://www.kcam.biz

A NUMERICAL METHOD FOR SOLVING ALLEN-CAHN
EQUATION'
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ABSTRACT. We propose a numerical method for solving Allen-Cahn equa-
tion, in both one-dimensional and two-dimensional cases. The new scheme
that is explicit, stable, and easy to compute is obtained and the proposed
method provides a straightforward and effective way for nonlinear evolution
equations.
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1. Introduction

Allen-Cahn equation was originally introduced by Allen and Cahn [1], and can
be regarded as a simple model for the process of phase separation of a binary
alloy at a fixed temperature. This equation has been widely applied to various
problems, such as image analysis [2, 3|, the motion by mean curvature flows [4],
crystal growth [5]. In particular, it has become a basic model equation for the
diffuse interface approach developed to study phase transitions and interfacial
dynamics in materials science [6]. Thus, an efficient and accurate numerical
method of this equation has practical significance, and has drawn the attention
of many people.

Various numerical methods have been used to solve Allen-Cahn equation,
and among them are the finite difference method [11, 7, 8], the finite element
method [9, 10], etc. In addition, Yang [12] considered the stabilized semi-implicit
(in time) scheme and the splitting scheme for this equation. Kessler et al. [13]
presented a posteriori error estimate for the given equation, in which the depen-
dence on €~ ! is no longer exponential, only polynomial.
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Recently, Abduwali et al. introduced the Local Crank-Nicolson method [14]
and the Modified Local Crank-Nicolson (MLCN) method [15] for the heat con-
duction equation. The MLCN method transforms the partial differential equa-
tion into ordinary differential equations, and uses the Trotter product formula to
approximate the coefficient matrix of these ordinary differential equations. The
MLCN solver separates this matrix into some small-block matrices, and employs
the Crank-Nicolson method to obtain the time updated solution. The MLCN
is an explicit difference scheme with simple computation and is unconditionally
stable.

In this paper, Allen-Cahn equation, in both one-dimensional and two dimen-
sional cases, is considered. The MLCN is developed to solve this nonlinear equa-
tion. Moreover, a new difference scheme for the Allen-Cahn equation is formed.
Our work in this paper, is not only used to solve the Allen-Cahn equation, but
can also be used to develop the MLCN for other nonlinear evolution equations.

2. New scheme for one-dimensional Allen-Cahn equation

Consider one-dimensional Allen-Cahn equation
ou 0%u
e
ot ox
with the initial condition

+ f(w) =0, (z,t) €[0,1] x [0,T], (1)

u(z,0) = up(x), = €]0,1],
and boundary conditions
u(0,t) =u(l,t) =0, te(0,7),

where + is positive number. f is
1
f(u) == F'(u) and F(u) = i(u2 —1)?

which will be assumed throughout this paper.

For Eq. (1), using central difference quotient instead of differential term of
space, we obtain the following semi-discrete equation:

dv(t) 1
il AV (t). (2)

Let h = 1/M be the mesh width in space and set x; = ¢h fori =1,2,..., M —1.
Moreover, V (t) in Eq. (2) is in the form V (t) = (v(z1,t),v(z2,t),...,v(x,,_,,t)T.
v(x;, 1) is the approximate solution of u(x;,t), v; := v(z;,t) and A is (M — 1) x
(M —1) tri-diagonal matrix

ay
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where a; = =2y — h2(v? —1),i=1,2,...,M — 1.
The solution of Eq. (2) with initial vector
V(0) = (v(21,0),v(x2,0),...,v(z,,_,,0))T can be expressed as

t
V() = exp(53 AV (0). (4)
Let 7 = T/N be the mesh width in time and set ¢, = n7 for n = 1,2,..., N.
Moreover, V (t,,) can be written in the form v (t.) = (v(z1, tn), v(®2, tn), - -, v(@ 4,1+ ta))T

and v := v(x;,t,). The nonlinear system (4) can be linearized by allowing the
nonlinearities to lag one time step behind. Thus we have

-
V(tn+1) = exp(ﬁA)v(tn)a (5)
where
af vy 0
Y oay
YAy, 7
0 yooay,

and a? = -2y — h%((v)2 —1),i=1,2,...,M — 1.
Consider the Crank-Nicolson scheme for the Allen-Cahn equation
ot g

v +1 +1 +1
3 1 n n n n n n
- =572 (vH_1 — 2u; +v, 0 + vy — 20 "‘712;1)

—((v")?=1)

Note that Eq. (7) can be rewritten as

(7)

n+1 n
Vit
2

=Ml (= xaf) op T = Ml = Myl + (1+ Aaf) of + M)y,

3

where the mesh ratio A = 575. Its matrix form is

V(tat1) = (I = AA) 71T + X))V (t,). (8)
Using (5) and (8), we obtain the approximation as follows:
T _
exp(354) ~ (I = M) YT+ 2A). (9)

From (9), we know that we should consider the approximation of exp(;z4) in
order to obtain a new numerical method. Thus, we introduce a lemma on Trotter
product formula.

Lemma 1. Let the matriz A can be denoted as A = Zf\i;l A;. Then

§
LA = Aﬁl t4: §=1,2 (10)
exp | 35 = lim 11 exp | 573 ,0=1,2,...,

for any h,t.
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It follows from Lemma 1
M-1
T TA;
exp (ﬁA) ~ H exp (}J) , (11)
i=1

so (11) is a new approximation. And in order to use this approximation, we split
matrix A in (5) as follows:

a’ v O 0
Ay = 0 0 O 0 7
0 0 O 0
0
0
AZ = 0 ry aj? fy O ,Z = 273, 7M72, (12)
0 0
0 0 0 0
Av—1=1 00 O
0 0 v a7 _,
For any 4,4 =1,2,...,M — 1, from (9) we obtain
exp (%Ai) ~ (I — M) “HT +2A4). (13)
Then applying (11) and (13), we see that
- M—1
exp (EA) ~ ] (- A4) (I + 4. (14)
i=1
Consequently, combination of (5) and (14) yields a new scheme, i.e.,
M-1
Viltnir) = [ (7= XA) T + AA))VA(tn). (15)
i=1

In order to improve the numerical accuracy of (15), we define B; = Ap/—;.
By substituting B; into (15), we deduce that
M—1

Valtsr) = [ (I = AB) ™ (I + AB)Va(t,). (16)
=1

Next, take the mean value of (15) and (16), i.e., V(thi1) = 2(Vi(tny1) +
Va(tnt1)). Denoting the coefficient matrix of V(¢,) by C()), we have

V(tnt1) = CNV (tn). (17)
So, (17) is the new scheme. We refer to the above method as MLCN method.
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The matrix (I + AA;) can be denoted by a simple form:
I o
(I+AA;) = S; i=2,3,...,M—2, (18)
Inr—i—o

where I; is an ¢ X ¢ identity matrix and

1 0 0
Si= 1| M 14 Aa; Ay
0 0 1
Similar to (18), we have
I;_5
(I =MA) = R;! i=23,...,M -2, (19)
Ing—io
where
1 0 0
-1 A A
Ri = 17;\ya7; lfl)\ai 17;\yai
0 0 1

Thus, we obtain an explicit expression of V(¢,41). Clearly, (17) is an explicit
scheme. Because we split A into some simple matrices as (12), we can obtain
the inverse of the matrix in (17) exactly and easily. Therefore, it avoids solving
the linear equations with large coefficient matrix, which is very important in
numerical computation.

Theorem 1. Let the matrix A be written as A = Zi\i;l A; and suppose vy >
2 ny\2
W Then, for the split method expressed by (12), the difference scheme

(17) is stable.
Proof. Let p; be any eigenvalue of matrix A;, and n; be any eigenvalue of matrix
2 n\2
(I — XA;)"1(I + MA;). Noticing that v > M, we have p; < 0, and
1A M—1
|77i| = |‘1t)\ﬁl} <1 Thus, Hi 1 |772| <1l

Therefore, the absolute value of any eigenvalue of the coefficient matrix C'(\)
of difference scheme (17) is not greater than 1. By the definition of stability, the
new difference scheme is stable. U

3. New scheme for two-dimensional Allen-Cahn equation

Consider two-dimensional Allen-Cahn equation

up = yAu — f(u), (x,y) €Q, tel0,T], (20)
with the initial condition
u(xayao) :Uo(ﬂf,y), (a?,y) S 97 (21)

and boundary condition

u=0, (z,y)€d, te(0,T], (22)
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where Q@ = (0,1) x (0,1), 9 is the boundary of domain €2 and ~ is positive
number.

Like one-dimensional version, for Eq. (20), by using central difference quo-
tient instead of differential term of space, we obtain the following semi-discrete
equation:

dv(t)

dt

Let z-direction and y-direction have the same mesh width in space, h = 1/M.
Set z; = th and y; = jh for ¢,5 =1,2,..., M — 1. Moreover, V(t) in Eq. (23) is
in the form V(¢) = (v(z1,91,t),v(x1, y2, 1), - . ., 0(@1, Yoy 1, 1), (T2, Y1, 1),
1}(1’2, Y2, t)7 s ,U(aj% Ynvi—1> t): R U(a:M—l > Y1, t)v U(xﬂl—l » Y2, t), s 7U('TM—1 s nylvt))T'
v(zi,yj,t) is the approximate solution of u(x;,y;,t), vi; = v(x;,y,,t) and A is
(M — 1) x (M — 1)? block tri-diagonal matrix

= AV (@), (23)

H1 ’}/I
I Hy vI
A= SRR , (24)
Y1 H, , I
0 71 Hj\l—l

where H; are (M — 1) x (M — 1) tri-diagonal matrices for i =1,2,..., M — 1,

0

0 Y Q; a1

and a;; = —4y — h*(v}; = 1), j=1,2,...,M — 1.

The solution of Eq. (23) with initial vector V' (0) = (v(z1,y1,0),v(z1,¥y2,0), ...,
U(xlayM_uO)av(an ylao)av(x%y% 0)7 ceey U(x%yM_uO)v s 7U(xM_1ay170)7
v(Ty_1,92,0), ... 0(x,,_,, Yy, _,,0))T can be expressed as

t
2
Let 7 = T/N be the mesh width in time and set t, = n7 for n = 1,2,..., N.
Moreover, V (t,) can be written in the form V(¢,) = (v(x1,y1,tn), v(x1, Y2, tn), - - -,
V(T1, Yy 15 tn), V(T2, Y1, tn), v(T2, Y2, tn)y - -, (T2, Yuy 15 tn)y - 0(T 1 Y1, tn)s
V(T 1y Y2rtn)s s 0(Thy 1y Yay1stn)) T, and vy = v(zi,Yj,tn). The nonlinear

system (25) can be linearized by allowing the nonlinearities to lag one time step
behind. Thus we have

V(t) = exp(—s A)V(0). (25)

V(tnsr) = exp(G5 AV (t): (26)
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where
H1 ’y[
0
vl Hy vI
a=| 7 @)
v H,, I
0 v Hy,
and
apy
! 0
Y ooaip Y
Hi: : 9
VG, Y
0 ’y ai,]\/]—l

and af; = —47—h2((vl”j)2 -1),57=12,....M — 1.
In order to obtain an approximate solution, we split the matrix A in (26) as
follows:

All =

A= 0---0~va;70---0 v0---0

Ay i=| 0 0va*, 0---070---0
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Ai,M—lz O’YO'Y(LZM_lo’YO ,

Apy—iai=| 0---050---0a%  y0---0 |,
0 000---0 0 00O 0
0 000---0 0 00O 0
0 000 00 0 00 0
0---000---00 0 00---0
Ayori=|[ 0.+ 070 0ya?, , 700 [,
0---000---00 0O 00---0

Av-_1,m—1 = 0---000---00 0 ’

fori=2,3,..., M — 2.
Similar to one-dimensional version, using the Trotter product formula and
(28), we deduce an iterative formula as follows

M-—1
Viltur) = [T (7= AA) ™I + AAy)Vi(t): (20)

4,J=1



A numerical method for solving Allen-Cahn equation 1485

In order to improve the numerical accuracy of (29), we define By; = A,, . ,, ..
Then substituting it into (29), we deduce that

M-—1
Valtusr) = [ (I = AByp) ™' (I + AByy))Va(tn)- (30)

i,5=1

Next, take the mean value of (29) and (30), i.e., V(thi1) = 2(Vi(tny1) +
Va(tn+1)). Denoting the coefficient matrix of V'(¢,) by C(X), we have

V(tnt1) = C(AN)V (tn). (31)

So, (31) is the new scheme. We refer (31) as MLCN scheme.
The matrix (I + AA;;) can be written in a simple form:

I+ 2Ay)
L 0
— O )\ PPN )\ 1_|_a“ A e )\ P O R
Y Y 2 Y (32)
0 1
i=92,3,... . M—2.
(I — MA;;)~! can also be written in a simple form as follow:
(I—XAi)™!
1 0
= 0 1 AZ” 12\111 1*1%'1' 1;\";” 13\311 0 ) (33)
0 1

i=2,3,...,M—2.

For the case ¢ = 1 and M — 1, the matrices can also be rewritten. Here, for
simplicity, we omit the details.
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Thus, we obtain an explicit expression of V' (¢,41). Clearly, (31) is an explicit
scheme. Because we split A into some simple matrices as (28), we can obtain
the inverse of the matrix in (31) exactly and easily.

Theorem 2. Let the matrix A be written as A = ZM_l Aij and suppose v >

1,j=1
2(1—(v)? . .
W. Then, for the split method expressed by (28), the difference scheme

(31) is stable.

The proof of this theorem is similar to that of one-dimensional version, so we
omit it.

4. Conclusions

The new numerical method (MLCN) for one-and two-dimensional Allen-Cahn
equations has been presented. It is shown that the method is an explicit and
stable difference scheme. Moreover, it avoids solving the linear equations with
large coefficient matrix, which is very important in numerical computation. The
advantages of the proposed method are that it is very easy to use it to solve Allen-
Cahn equation and it can exhibit the dynamics property of the given equation
well. Therefore, it is suggested to use the MLCN to get the numerical solution
of the Allen-Cahn equation effectively.
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