참고문헌
- A.Allievi, R.Bermejo, Finite element modified method of characteristics for the Navier- Stokes equations, Int. J. Numer. Meth. Fluids, 32 (2000) 439-464. https://doi.org/10.1002/(SICI)1097-0363(20000229)32:4<439::AID-FLD946>3.0.CO;2-Y
- R.Bank, D.Rose, Some error estimates for the Box method, SIAM J. Numer. Anal., 24 (1987) 777-787. https://doi.org/10.1137/0724050
- P.Bochev, C.Dohrmann, M.Gunzburger, Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal. 44 (2006) 82-101. https://doi.org/10.1137/S0036142905444482
- K.Boukir, Y.Maday, B.MEtivet, E.Razafindrakoto, A high-order characteristic/fnite ele- ment method for the incompressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 25 (1997) 1421-1454. https://doi.org/10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.0.CO;2-A
- Z.Cai, S.McCormick, On the accuracy of the finite volume element method for diffusion equations on composite grids, SIAM J. Numer. Anal., 27 (1990) 635-655.
- Z.Cai, J.Mandel, S.McCormick, The finite volume element method for diffusion equations on general triangulations, SIAM J. Numer. Anal., 28 (1991) 392-402. https://doi.org/10.1137/0728022
- Z.Chen, Finite element methods and their applications, Spring-Verlag, Heidelberg, 2005.
-
Z.Chen, R.Li, A.Zhou, A note on the optimal
$L^2$ -estimate of the finite volume element method, Adv. Comput. Math., 16 (2002) 291-303. https://doi.org/10.1023/A:1014577215948 - P.Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Com- pany, 1978.
- J.Douglas, T.Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19 (1982) 871-885. https://doi.org/10.1137/0719063
- R.Ewing, T.Lin, Y.Lin, On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM J.Numer. Anal., 39 (2002) 1865-1888. https://doi.org/10.1137/S0036142900368873
- F.Gao, Y.Yuan, The characteristic finite volume element method for the nonlinear convection-dominated diffusion problem, Comput. Math. Appl., 56 (2008) 71-81. https://doi.org/10.1016/j.camwa.2007.11.033
- V.Girault, P.A.Raviart, Finite element method for Navier-Stokes equations: theory and algorithms, Springer-Verlag, Berlin, Herdelberg, 1987.
- G.He, Y.He, The finite volume method based on stabilized finite element for the stationary Navier-Stokes problem, J. Comput. Appl. Math., 205 (2007) 651-665. https://doi.org/10.1016/j.cam.2006.07.007
- G.He, Y.He, Z.Chen, A penalty finite volume method for the transient Navier-Stokes problem, Appl. Numer. Math., 58 (2008) 1583-1613. https://doi.org/10.1016/j.apnum.2007.09.006
- G.He, Y.He, X.Feng, Finite volume method based on stabilized finite elements for the nonstationary Navier-Stokes problem, Numer. Methods Partial Differential Eq., 23 (2007) 1167-1191. https://doi.org/10.1002/num.20216
- J.Heywood, R.Rannacher, Finite element approximation of the nonstationary Navier- Stokes problem I: regularity of solutions and second-order error estimates for spatial dis- cretization, SIAM J. Numer. Anal. 19 (1982) 275-311. https://doi.org/10.1137/0719018
- J.Li, Z.Chen, A new stabilized finite volume method for the stationary Stokes equations, Adv. Comput. Math., 30 (2009) 141-152. https://doi.org/10.1007/s10444-007-9060-5
- R.Li, Z.Chen, W.Wu, Generalized difference methods for differential equations, Marcel Dekker, New York, 2000.
- J.Li, Y.He, A stabilized finite element method based on two local Gauss integrations for the Stokes equations, J. Comput. Appl. Math. 214 (2008) 58-65. https://doi.org/10.1016/j.cam.2007.02.015
- H.Wu, R.Li, Error estimates for finite volume element methods for general second-order elliptic problems, Numer. Methods Partial Differential Eq., 19 (2003) 693-708. https://doi.org/10.1002/num.10068
- H.Notsu, M.Tabata, A single-step characteristic-curve finite element scheme of second order in time for the incompressible Navier-Stokes equations, J. Sci. Comput., 38 (2009) 1-14. https://doi.org/10.1007/s10915-008-9217-5
- O.Pironneau, On the transport-diffusion algorithm and its applications to the Navier- Stokes equations, Numer. Math., 38 (1982) 309-332. https://doi.org/10.1007/BF01396435
- E.Suli, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations, Numer. Math., 53 (1988) 459-483. https://doi.org/10.1007/BF01396329
- R. Temam, Navier-Stokes equation: Theory and numerical analysis (Third edition), North- Holland, Amsterdam, New York, Oxford, 1984.
- C.Wang, Characteristic finite analytic method (CFAM) for incompressible Navier-Stokes equations, ACTA Mech., 143 (2000) 57-66. https://doi.org/10.1007/BF01250017
- X.Ye, On the relationship between finite volume and finite element methods qpplied to the Stokes equations, Numer. Methods Partial Differential Eq., 5 (2001) 440-453.
- T.Zhang, Z.Y.Si, Y.N.He, A stabilized characteristic finite element method for the tran- sient Navier-Stokes equations, Int. J. Comput. Fluid Dyn., on line.