References
- Andersland, O. B. and Ladanyi, B., (2004), Frozen Ground Engineering. 2nd ed: John Wiley & Sons, Inc.
- Barchelor, G. K. and O'Brien, R. W., (1977), "Thermal or Electrical Conduction Through a Granular Material", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, pp.313-333.
- Becker, B. R., Misra, A., and Fricke, B. A., (1992), "Development of correlations for soil thermal conductivity", International Communications in Heat and Mass Transfer, 19(1), pp.59-68. https://doi.org/10.1016/0735-1933(92)90064-O
- Chen, S., (2008), "Thermal conductivity of sands", Heat and Mass Transfer, 44(10), pp.1241-1246. https://doi.org/10.1007/s00231-007-0357-1
- Coop, M. R. and Lee, I. K., (1993), "The behaviour of granular soils at elevated stresses", Predictive soil mechanics, Proceedings of the C.P.Wroth Memorial Symposium: Thomas Telford, pp.186-198.
- Cortes, D. D., et al., (2009), "Thermal conductivity of hydratebearing sediments", Journal of Geophysical Research, 114 (B11).
- Cote, J., Fillion, M.-H., and Konrad, J.-M., (2011), "Estimating Hydraulic and Thermal Conductivities of Crushed Granite Using Porosity and Equivalent Particle Size", Journal of Geotechnical and Geoenvironmental Engineering.
- Cundall, P. A. and Strack, O. D. L., (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), pp.47-65. https://doi.org/10.1680/geot.1979.29.1.47
- Esch, D. C., (2004), Thermal Analysis, Construction and Monitoring Methods for Frozen Ground. Vol.492. Resteon, VA: American Society of Civil Engineers.
- Fillion, M.-H., Cote, J., and Konrad, J.-M., (2011), "Thermal radiation and conduction properties of materials ranging from sand to rock-fill", Canadian Geotechnical Journal, 48(4), pp.532-542. https://doi.org/10.1139/t10-093
- Holtzman, R., Silin, D. B., and Patzek, T. W., (2010), "Frictional granular mechanics: A variational approach", International Journal for Numerical Methods in Engineering, 81(10), pp.1259-1280.
- Incropera, F. P. and Dewitt, D. P., (1996), Fundamentals of heat and mass transfer: John Wiley & Sons.
- Itasca, (2003), PFC3D (Particle Flow Code in three dimensions) Version 3.0. Minneapolis, MN.
- Jang, E.-R., Jung, Y.-H., and Chung, C.-K., (2010), "Stress ratio-fabric relationships of granular soils under axi-symmetric stress and plane-strain loading", Computers and Geotechnics, 37(7-8), pp.913-929. https://doi.org/10.1016/j.compgeo.2010.07.010
- Johansen, O., (1975), Thermal conductivity of soils. University of Trondheim, Trondheim, Norway.
- Johnston, I., Narsilio, G., and Colls, S., (2011), "Emerging geothermal energy technologies", KSCE Journal of Civil Engineering, 15(4), pp.643-653. https://doi.org/10.1007/s12205-011-0005-7
- Mindlin, R. D. and Deresiewicz, H., (1953), "Elastic spheres in contact under varying oblique forces", Journal of Applied Mechanics, ASME, 20(3), pp.327-344.
- Ng, T.T., (2006), "Input parameters of discrete element methods", Journal of Engineering Mechanics, 132(7), pp.723-729. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:7(723)
- O'Sullivan, C. and Bray, J. D., (2004), "Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme", Engineering Computations, 21(2-4), pp.278-303. https://doi.org/10.1108/02644400410519794
- O'Sullivan, C., (2011), Particulate Discrete Element Modelling - A Geomechanics Perspective. Applied Geotechnics: Spoon Press.
- Oda, M., Nemat-Nasser, S., and Konishi, J., (1985), "Stressinduced anisotropy in granular masses", Soils and Foundations, 25(3), pp.85-97. https://doi.org/10.3208/sandf1972.25.3_85
- Pestana, J. M., Whittle, A. J., and Salvati, L. A., (2002), "Evaluation of a constitutive model for clays and sands: Part I - sand behaviour", International Journal for Numerical and Analytical Methods in Geomechanics, 26(11), pp.1097-1121. https://doi.org/10.1002/nag.237
- Proctor, D. C. and Barton, R. R., (1974), "Measurements of the angle of interparticle friction", Geotechnique, 24(4), pp.581-604. https://doi.org/10.1680/geot.1974.24.4.581
- Rothenburg, L. and Kruyt, N. P., (2004), "Critical state and evolution of coordination number in simulated granular materials", International Journal of Solids and Structures, 41(21), pp.5763-5774. https://doi.org/10.1016/j.ijsolstr.2004.06.001
- Santamarina, J. C., (2001), Soils and waves. New York: J. Wiley & Sons. xix, 488 p. : ill. ; 25 cm.
- Singh, D. N. and Devid, K., (2000), "Generalized relationships for estimating soil thermal resistivity", Experimental Thermal and Fluid Science, 22(3-4), pp.133-143. https://doi.org/10.1016/S0894-1777(00)00020-0
- Sundberg, J., (2009), "Estimation of thermal conductivity and its spatial variability in igneous rocks from in situ density logging", International Journal of Rock Mechanics and Mining Sciences, 46(6), pp.1023-1028. https://doi.org/10.1016/j.ijrmms.2009.01.010
- Tarnawski, V. R., et al., (2002), "Inter-particle contact heat transfer in soil systems at moderate temperatures", International Journal of Energy Research, 26(15), pp.1345-1358. https://doi.org/10.1002/er.853
- Thornton, C., (2000), "Numerical simulations of deviatoric shear deformation of granular media", Geotechnique, 50(1), pp.43-53. https://doi.org/10.1680/geot.2000.50.1.43
- Vargas, W. L. and McCarthy, J. J., (2002), "Stress effects on the conductivity of particulate beds", Chemical Engineering Science, 57(15), pp.3119-3131. https://doi.org/10.1016/S0009-2509(02)00176-8
- Yagi, S. and Kunii, D., (1957), "Studies on effective thermal conductivities in packed beds", AIChE Journal, 3(3), pp.373-381. https://doi.org/10.1002/aic.690030317
- Yimsiri, S. and Soga, K., (2000), "Micromechanics-based stressstrain behaviour of soils at small strains", Geotechnique, 50(5), pp.559-571. https://doi.org/10.1680/geot.2000.50.5.559
- Yimsiri, S. and Soga, K., (2010), "DEM analysis of soil fabric effects on behaviour of sand", Geotechnique, 60(6), pp.483-495. https://doi.org/10.1680/geot.2010.60.6.483
- Yun, T. S. and Santamarina, J. C., (2008), "Fundamental study of thermal conduction in dry soils", Granular matter, 10(3), pp.197-207. https://doi.org/10.1007/s10035-007-0051-5
- Yun, T. S. and Evans, T. M., (2010), "Three-dimensional random network model for thermal conductivity in particulate materials", Computers and Geotechnics, 37(7-8), pp.991-998. https://doi.org/10.1016/j.compgeo.2010.08.007
- Yun, T. S., Dumas, B., and Santamarina, J. C., (2011), "Heat transport in granular materials during cyclic fluid flow", Granular matter, 13(1), pp.29-37. https://doi.org/10.1007/s10035-010-0220-9
- Zhao, X. and Evans, T. M., (2009), "Discrete simulations of laboratory loading conditions", International Journal of Geomechanics, 9(4), pp.169-178. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(169)
Cited by
- Variation of Thermal and Mechanical Properties of Crystalline Granite under Saturated-Loading Condition vol.24, pp.3, 2014, https://doi.org/10.7474/TUS.2014.24.3.224
- 화강풍화토의 열전도도 산정에 대한 연구 vol.32, pp.c2, 2011, https://doi.org/10.12652/ksce.2012.32.2c.069
- 진공압에 따른 한국형 인공월면토(KLS-1)의 열전도도 평가 vol.37, pp.8, 2011, https://doi.org/10.7843/kgs.2021.37.8.51