DOI QR코드

DOI QR Code

Loading Effects on Thermal Conductivity of Soils: Particle-Scale Study

하중 조건이 지반의 열전도도에 미치는 영향: 입자 스케일에서의 연구

  • 이정훈 (연세대학교 사회환경시스템공학부) ;
  • 주진현 (한국건설기술연구원) ;
  • 윤태섭 (연세대학교 사회환경시스템공학부) ;
  • 이장근 (한국건설기술연구원) ;
  • 김영석 (한국건설기술연구원)
  • Received : 2011.06.23
  • Accepted : 2011.09.21
  • Published : 2011.09.30

Abstract

The stress condition mainly dominates the thermal conductivity of soils whereas governing factors such as unit weight and porosity suggested by empirical correlations are still valid. The 3D thermal network model enables evaluation of the stress-dependent thermal conductivity of particulate materials generated by discrete element method (DEM). The relationship among dominant factors is analyzed based on the coordination number and porosity determined by stress condition and thermal conductivity of pore fluid. Results show that the variation of thermal conductivity is strongly attributed to the enlargement of inter-particle contact area by loading history and pore fluid conductivity. This study highlights that the anisotropic evolution of thermal conductivity depends on the directional load and that the particle-scale mechanism mainly dictates the heat transfer in soils.

지반 물질의 열전도도는 경험식이 제안하는 단위 중량, 간극률 등의 영향 인자 이외에도 하중조건에 따라 크게 좌우된다. 본 논문에서는 개별요소법에 의해 생성된 입자상 지반재료의 열 전달 특성을 열 네트워크 모델로 해석하여 하중이 열전도도에 미치는 영향을 평가하였다. 하중의 변화에 의한 개별 입자들간의 접촉수 및 간극률, 간극수의 전도도에 따른 열전도도를 산출하여 영향 요소들간의 관계를 분석하였다. 전도도의 변화 양상은 전단강성도 분석과 유사하게 열전달 방향 및 하중 크기에 따른 멱함수 형태로 회귀분석이 가능하였다. 해석 결과 하중에 따른 입자간 접촉 면적의 증가 및 간극수의 전도도가 전체 입자상 물질의 열 흐름에 큰 영향을 미침을 알 수 있었다. 열전도도의 이방성은 하중 방향에 의해 좌우되며 입자 스케일에서의 매커니즘이 열 흐름을 좌우하는 중요한 인자임을 보였다.

Keywords

References

  1. Andersland, O. B. and Ladanyi, B., (2004), Frozen Ground Engineering. 2nd ed: John Wiley & Sons, Inc.
  2. Barchelor, G. K. and O'Brien, R. W., (1977), "Thermal or Electrical Conduction Through a Granular Material", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, pp.313-333.
  3. Becker, B. R., Misra, A., and Fricke, B. A., (1992), "Development of correlations for soil thermal conductivity", International Communications in Heat and Mass Transfer, 19(1), pp.59-68. https://doi.org/10.1016/0735-1933(92)90064-O
  4. Chen, S., (2008), "Thermal conductivity of sands", Heat and Mass Transfer, 44(10), pp.1241-1246. https://doi.org/10.1007/s00231-007-0357-1
  5. Coop, M. R. and Lee, I. K., (1993), "The behaviour of granular soils at elevated stresses", Predictive soil mechanics, Proceedings of the C.P.Wroth Memorial Symposium: Thomas Telford, pp.186-198.
  6. Cortes, D. D., et al., (2009), "Thermal conductivity of hydratebearing sediments", Journal of Geophysical Research, 114 (B11).
  7. Cote, J., Fillion, M.-H., and Konrad, J.-M., (2011), "Estimating Hydraulic and Thermal Conductivities of Crushed Granite Using Porosity and Equivalent Particle Size", Journal of Geotechnical and Geoenvironmental Engineering.
  8. Cundall, P. A. and Strack, O. D. L., (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), pp.47-65. https://doi.org/10.1680/geot.1979.29.1.47
  9. Esch, D. C., (2004), Thermal Analysis, Construction and Monitoring Methods for Frozen Ground. Vol.492. Resteon, VA: American Society of Civil Engineers.
  10. Fillion, M.-H., Cote, J., and Konrad, J.-M., (2011), "Thermal radiation and conduction properties of materials ranging from sand to rock-fill", Canadian Geotechnical Journal, 48(4), pp.532-542. https://doi.org/10.1139/t10-093
  11. Holtzman, R., Silin, D. B., and Patzek, T. W., (2010), "Frictional granular mechanics: A variational approach", International Journal for Numerical Methods in Engineering, 81(10), pp.1259-1280.
  12. Incropera, F. P. and Dewitt, D. P., (1996), Fundamentals of heat and mass transfer: John Wiley & Sons.
  13. Itasca, (2003), PFC3D (Particle Flow Code in three dimensions) Version 3.0. Minneapolis, MN.
  14. Jang, E.-R., Jung, Y.-H., and Chung, C.-K., (2010), "Stress ratio-fabric relationships of granular soils under axi-symmetric stress and plane-strain loading", Computers and Geotechnics, 37(7-8), pp.913-929. https://doi.org/10.1016/j.compgeo.2010.07.010
  15. Johansen, O., (1975), Thermal conductivity of soils. University of Trondheim, Trondheim, Norway.
  16. Johnston, I., Narsilio, G., and Colls, S., (2011), "Emerging geothermal energy technologies", KSCE Journal of Civil Engineering, 15(4), pp.643-653. https://doi.org/10.1007/s12205-011-0005-7
  17. Mindlin, R. D. and Deresiewicz, H., (1953), "Elastic spheres in contact under varying oblique forces", Journal of Applied Mechanics, ASME, 20(3), pp.327-344.
  18. Ng, T.T., (2006), "Input parameters of discrete element methods", Journal of Engineering Mechanics, 132(7), pp.723-729. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:7(723)
  19. O'Sullivan, C. and Bray, J. D., (2004), "Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme", Engineering Computations, 21(2-4), pp.278-303. https://doi.org/10.1108/02644400410519794
  20. O'Sullivan, C., (2011), Particulate Discrete Element Modelling - A Geomechanics Perspective. Applied Geotechnics: Spoon Press.
  21. Oda, M., Nemat-Nasser, S., and Konishi, J., (1985), "Stressinduced anisotropy in granular masses", Soils and Foundations, 25(3), pp.85-97. https://doi.org/10.3208/sandf1972.25.3_85
  22. Pestana, J. M., Whittle, A. J., and Salvati, L. A., (2002), "Evaluation of a constitutive model for clays and sands: Part I - sand behaviour", International Journal for Numerical and Analytical Methods in Geomechanics, 26(11), pp.1097-1121. https://doi.org/10.1002/nag.237
  23. Proctor, D. C. and Barton, R. R., (1974), "Measurements of the angle of interparticle friction", Geotechnique, 24(4), pp.581-604. https://doi.org/10.1680/geot.1974.24.4.581
  24. Rothenburg, L. and Kruyt, N. P., (2004), "Critical state and evolution of coordination number in simulated granular materials", International Journal of Solids and Structures, 41(21), pp.5763-5774. https://doi.org/10.1016/j.ijsolstr.2004.06.001
  25. Santamarina, J. C., (2001), Soils and waves. New York: J. Wiley & Sons. xix, 488 p. : ill. ; 25 cm.
  26. Singh, D. N. and Devid, K., (2000), "Generalized relationships for estimating soil thermal resistivity", Experimental Thermal and Fluid Science, 22(3-4), pp.133-143. https://doi.org/10.1016/S0894-1777(00)00020-0
  27. Sundberg, J., (2009), "Estimation of thermal conductivity and its spatial variability in igneous rocks from in situ density logging", International Journal of Rock Mechanics and Mining Sciences, 46(6), pp.1023-1028. https://doi.org/10.1016/j.ijrmms.2009.01.010
  28. Tarnawski, V. R., et al., (2002), "Inter-particle contact heat transfer in soil systems at moderate temperatures", International Journal of Energy Research, 26(15), pp.1345-1358. https://doi.org/10.1002/er.853
  29. Thornton, C., (2000), "Numerical simulations of deviatoric shear deformation of granular media", Geotechnique, 50(1), pp.43-53. https://doi.org/10.1680/geot.2000.50.1.43
  30. Vargas, W. L. and McCarthy, J. J., (2002), "Stress effects on the conductivity of particulate beds", Chemical Engineering Science, 57(15), pp.3119-3131. https://doi.org/10.1016/S0009-2509(02)00176-8
  31. Yagi, S. and Kunii, D., (1957), "Studies on effective thermal conductivities in packed beds", AIChE Journal, 3(3), pp.373-381. https://doi.org/10.1002/aic.690030317
  32. Yimsiri, S. and Soga, K., (2000), "Micromechanics-based stressstrain behaviour of soils at small strains", Geotechnique, 50(5), pp.559-571. https://doi.org/10.1680/geot.2000.50.5.559
  33. Yimsiri, S. and Soga, K., (2010), "DEM analysis of soil fabric effects on behaviour of sand", Geotechnique, 60(6), pp.483-495. https://doi.org/10.1680/geot.2010.60.6.483
  34. Yun, T. S. and Santamarina, J. C., (2008), "Fundamental study of thermal conduction in dry soils", Granular matter, 10(3), pp.197-207. https://doi.org/10.1007/s10035-007-0051-5
  35. Yun, T. S. and Evans, T. M., (2010), "Three-dimensional random network model for thermal conductivity in particulate materials", Computers and Geotechnics, 37(7-8), pp.991-998. https://doi.org/10.1016/j.compgeo.2010.08.007
  36. Yun, T. S., Dumas, B., and Santamarina, J. C., (2011), "Heat transport in granular materials during cyclic fluid flow", Granular matter, 13(1), pp.29-37. https://doi.org/10.1007/s10035-010-0220-9
  37. Zhao, X. and Evans, T. M., (2009), "Discrete simulations of laboratory loading conditions", International Journal of Geomechanics, 9(4), pp.169-178. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(169)

Cited by

  1. Variation of Thermal and Mechanical Properties of Crystalline Granite under Saturated-Loading Condition vol.24, pp.3, 2014, https://doi.org/10.7474/TUS.2014.24.3.224
  2. 화강풍화토의 열전도도 산정에 대한 연구 vol.32, pp.c2, 2011, https://doi.org/10.12652/ksce.2012.32.2c.069
  3. 진공압에 따른 한국형 인공월면토(KLS-1)의 열전도도 평가 vol.37, pp.8, 2011, https://doi.org/10.7843/kgs.2021.37.8.51