DOI QR코드

DOI QR Code

FUNCTIONAL RELATIONS INVOLVING SRIVASTAVA'S HYPERGEOMETRIC FUNCTIONS HB AND F(3)

  • Received : 2011.01.13
  • Accepted : 2011.05.13
  • Published : 2011.06.30

Abstract

B. C. Carlson [Some extensions of Lardner's relations between $_0F_3$ and Bessel functions, SIAM J. Math. Anal. 1(2) (1970), 232-242] presented several useful relations between Bessel and generalized hypergeometric functions that generalize some earlier results. Here, by simply splitting Srivastava's hypergeometric function $H_B$ into eight parts, we show how some useful and generalized relations between Srivastava's hypergeometric functions $H_B$ and $F^{(3)}$ can be obtained. These main results are shown to be specialized to yield certain relations between functions $_0F_1$, $_1F_1$, $_0F_3$, ${\Psi}_2$, and their products including different combinations with different values of parameters and signs of variables. We also consider some other interesting relations between the Humbert ${\Psi}_2$ function and $Kamp\acute{e}$ de $F\acute{e}riet$ function, and between the product of exponential and Bessel functions with $Kamp\acute{e}$ de $F\acute{e}riet$ functions.

Keywords

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series 55 National Bureau of Standards, Washington, D.C., 1964; Reprinted by Dover Publications, New York, 1965.
  2. A. Altin, Some expansion formulas for a class of singular partial differential equations, Proc. Amer. Math. Soc. 85 (1982), no. 1, 42-46.
  3. P. Appell and J. Kampe de Feriet, Fonctions Hypergeometriques et Hyper- spheriques; Polynomes d'Hermite, Gauthier - Villars, Paris, 1926.
  4. J. Barros-Neto and I. M. Gelfand, Fundamental solutions for the Tricomi op- erator, Duke Math. J. 98 (1999), no. 3, 465-483. https://doi.org/10.1215/S0012-7094-99-09814-9
  5. J. Barros-Neto and I. M. Gelfand, Fundamental solutions for the Tricomi op- erator II, Duke Math. J. 111 (2002), no. 3, 561-584. https://doi.org/10.1215/S0012-7094-02-11137-5
  6. J. Barros-Neto and I. M. Gelfand, Fundamental solutions for the Tricomi op- erator III, Duke Math. J. 128 (2005), no. 1, 119-140. https://doi.org/10.1215/S0012-7094-04-12815-5
  7. L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York, 1958.
  8. B. C. Carlson, Some extensions of Lardner's relations between $_0F_3$ and Bessel functions, SIAM J. Math. Anal. 1(2) (1970), 232-242. https://doi.org/10.1137/0501021
  9. A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcen- dental Functions, Vol. 1, McGraw-Hill Book Company, New York, Toronto and London, 1953.
  10. A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcen- dental Functions, Vol. 2, McGraw-Hill Book Company, New York, Toronto and London, 1953.
  11. F. I. Frankl, Selected Works in Gas Dynamics, Nauka, Moscow, 1973.
  12. A. J. Fryant, Growth and complete sequences of generalized bi-axially sym- metric potentials, J. Differential Equations 31(2) (1979), 155-164. https://doi.org/10.1016/0022-0396(79)90141-4
  13. A. Hasanov, Fundamental solutions of generalized bi-axially symmetric Helmholtz equation, Complex Variables and Elliptic Equations 52(8) (2007), 673-683. https://doi.org/10.1080/17476930701300375
  14. A. Hasanov, Some solutions of generalized Rassias's equation, Intern. J. Appl. Math. Stat. 8(M07) (2007), 20-30.
  15. A. Hasanov, Fundamental solutions for degenerated elliptic equation with two perpendicular lines of degeneration. Intern. J. Appl. Math. Stat. 13(8) (2008), 41-49.
  16. A. Hasanov and E.T. Karimov, Fundamental solutions for a class of three- dimensional elliptic equations with singular coefficients. Appl. Math. Letters 22 (2009), 1828-1832. https://doi.org/10.1016/j.aml.2009.07.006
  17. A. Hasanov, J. M. Rassias and M. Turaev, Fundamental solution for the gener- alized Elliptic Gellerstedt Equation, Book: "Functional Equations, Difference Inequalities and ULAM Stability Notions", Nova Science Publishers Inc. NY, USA, 6 (2010), 73-83.
  18. A. Hasanov and H. M. Srivastava, Some decomposition formulas associated with the Lauricella Function and other multiple hypergeometric functions.Appl. Math. Lett. 19 (2006), 113-121. https://doi.org/10.1016/j.aml.2005.03.009
  19. A. Hasanov and H. M. Srivastava, Decomposition formulas associated with the Lauricella multivariable hypergeometric functions, Comput. Math. Appl. 53(7) (2007), 1119-1128. https://doi.org/10.1016/j.camwa.2006.07.007
  20. A. Hasanov, H. M. Srivastava and M. Turaev, Decomposition formulas for some triple hypergeometric functions, J. Math. Anal. Appl. 324 (2006), 955-969. https://doi.org/10.1016/j.jmaa.2006.01.006
  21. A. Hasanov and M. Turaev, Decomposition formulas for the double hyperge- ometric G1 and G2 Hypergeometric functions, Appl. Math. Comput. 187(1) (2007), 195-201. https://doi.org/10.1016/j.amc.2006.08.115
  22. Y. S. Kim, A. K. Rathie and J. Choi, Note on Srivastava's triple hypergeometric series $H_A$, Commun. Korean Math. Soc. 18(3) (2003), 581-586. https://doi.org/10.4134/CKMS.2003.18.3.581
  23. T.J. Lardner, Relations between $$_0F_3$$ and Bessel functions, SIAM Review 11 (1969), 69-72. https://doi.org/10.1137/1011007
  24. T.J. Lardner and C.R. Steele, Symmetric deformations of circular cylindrical elastic shells of exponentially varying thickness, Trans. ASME Ser. E. J. Appl. Mech. 35 (1968), 169-170. https://doi.org/10.1115/1.3601137
  25. G. Lohofer, Theory of an electromagnetically deviated metal sphere. 1: Ab- sorbed power, SIAM J. Appl. Math. 49 (1989), 567-581. https://doi.org/10.1137/0149032
  26. P. A. McCoy, Polynomial approximation and growth of generalized axisym- metric potentials, Canad. J. Math. 31(1) (1979), 49-59. https://doi.org/10.4153/CJM-1979-006-7
  27. A. W. Niukkanen, Generalized hypergeometric series arising in physical and quantum chemical applications, J. Phys. A: Math. Gen. 16 (1983), 1813-1825. https://doi.org/10.1088/0305-4470/16/9/007
  28. A. K. Rathie and Y. S. Kim, Further results on Srivastava's triple hypergeo- metric series, Indian J. Pure Appl. Math. 35(8) (2004), 991-1002.
  29. M. S. Salakhitdinov and A. Hasanov, A solution of the Neumann-Dirichlet boundary value problem for generalized bi-axially symmetric Helmholtz equation, Complex Variables and Elliptic Equations 53(4) (2008), 355-364. https://doi.org/10.1080/17476930701769041
  30. H. M. Srivastava, Hypergeometric functions of three variables, Ganita 15(2) (1964), 97-108.
  31. H. M. Srivastava, Some integrals representing hypergeometric functions, Rend. Circ. Mat. Palermo 16(2) (1967), 99-115. https://doi.org/10.1007/BF02844089
  32. H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Aca- demic Publishers, Dordrecht, Boston and London, 2001.
  33. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Se- ries, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane, and Toronto, 1985.
  34. M. Turaev, Decomposition formulas for Srivastava's hypergeometric function on Saran functions, Comput. Appl. Math. 233 (2009), 842-846. https://doi.org/10.1016/j.cam.2009.02.050
  35. G. N. Watson, A Treatise on the Theory of Bessel Functions, Second Edition, Cambridge University Press, Cambridge, London and New York, 1944.
  36. A. Weinstein, Discontinuous integrals and generalized potential theory, Trans. Amer. Math. Soc. 63 (1946), 342-354.
  37. A. Weinstein, Generalized axially symmetric potential theory, Bull. Amer. Math. Soc. 59 (1953), 20-38. https://doi.org/10.1090/S0002-9904-1953-09651-3
  38. R. J. Weinacht, Fundamental solutions for a class of singular equations, Contrib. Differential Equations 3 (1964), 43-55.