References
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series 55 National Bureau of Standards, Washington, D.C., 1964; Reprinted by Dover Publications, New York, 1965.
- A. Altin, Some expansion formulas for a class of singular partial differential equations, Proc. Amer. Math. Soc. 85 (1982), no. 1, 42-46.
- P. Appell and J. Kampe de Feriet, Fonctions Hypergeometriques et Hyper- spheriques; Polynomes d'Hermite, Gauthier - Villars, Paris, 1926.
- J. Barros-Neto and I. M. Gelfand, Fundamental solutions for the Tricomi op- erator, Duke Math. J. 98 (1999), no. 3, 465-483. https://doi.org/10.1215/S0012-7094-99-09814-9
- J. Barros-Neto and I. M. Gelfand, Fundamental solutions for the Tricomi op- erator II, Duke Math. J. 111 (2002), no. 3, 561-584. https://doi.org/10.1215/S0012-7094-02-11137-5
- J. Barros-Neto and I. M. Gelfand, Fundamental solutions for the Tricomi op- erator III, Duke Math. J. 128 (2005), no. 1, 119-140. https://doi.org/10.1215/S0012-7094-04-12815-5
- L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York, 1958.
-
B. C. Carlson, Some extensions of Lardner's relations between
$_0F_3$ and Bessel functions, SIAM J. Math. Anal. 1(2) (1970), 232-242. https://doi.org/10.1137/0501021 - A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcen- dental Functions, Vol. 1, McGraw-Hill Book Company, New York, Toronto and London, 1953.
- A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcen- dental Functions, Vol. 2, McGraw-Hill Book Company, New York, Toronto and London, 1953.
- F. I. Frankl, Selected Works in Gas Dynamics, Nauka, Moscow, 1973.
- A. J. Fryant, Growth and complete sequences of generalized bi-axially sym- metric potentials, J. Differential Equations 31(2) (1979), 155-164. https://doi.org/10.1016/0022-0396(79)90141-4
- A. Hasanov, Fundamental solutions of generalized bi-axially symmetric Helmholtz equation, Complex Variables and Elliptic Equations 52(8) (2007), 673-683. https://doi.org/10.1080/17476930701300375
- A. Hasanov, Some solutions of generalized Rassias's equation, Intern. J. Appl. Math. Stat. 8(M07) (2007), 20-30.
- A. Hasanov, Fundamental solutions for degenerated elliptic equation with two perpendicular lines of degeneration. Intern. J. Appl. Math. Stat. 13(8) (2008), 41-49.
- A. Hasanov and E.T. Karimov, Fundamental solutions for a class of three- dimensional elliptic equations with singular coefficients. Appl. Math. Letters 22 (2009), 1828-1832. https://doi.org/10.1016/j.aml.2009.07.006
- A. Hasanov, J. M. Rassias and M. Turaev, Fundamental solution for the gener- alized Elliptic Gellerstedt Equation, Book: "Functional Equations, Difference Inequalities and ULAM Stability Notions", Nova Science Publishers Inc. NY, USA, 6 (2010), 73-83.
- A. Hasanov and H. M. Srivastava, Some decomposition formulas associated with the Lauricella Function and other multiple hypergeometric functions.Appl. Math. Lett. 19 (2006), 113-121. https://doi.org/10.1016/j.aml.2005.03.009
- A. Hasanov and H. M. Srivastava, Decomposition formulas associated with the Lauricella multivariable hypergeometric functions, Comput. Math. Appl. 53(7) (2007), 1119-1128. https://doi.org/10.1016/j.camwa.2006.07.007
- A. Hasanov, H. M. Srivastava and M. Turaev, Decomposition formulas for some triple hypergeometric functions, J. Math. Anal. Appl. 324 (2006), 955-969. https://doi.org/10.1016/j.jmaa.2006.01.006
- A. Hasanov and M. Turaev, Decomposition formulas for the double hyperge- ometric G1 and G2 Hypergeometric functions, Appl. Math. Comput. 187(1) (2007), 195-201. https://doi.org/10.1016/j.amc.2006.08.115
-
Y. S. Kim, A. K. Rathie and J. Choi, Note on Srivastava's triple hypergeometric series
$H_A$ , Commun. Korean Math. Soc. 18(3) (2003), 581-586. https://doi.org/10.4134/CKMS.2003.18.3.581 -
T.J. Lardner, Relations between
$ and Bessel functions, SIAM Review 11 (1969), 69-72. https://doi.org/10.1137/1011007$_0F_3$ $ - T.J. Lardner and C.R. Steele, Symmetric deformations of circular cylindrical elastic shells of exponentially varying thickness, Trans. ASME Ser. E. J. Appl. Mech. 35 (1968), 169-170. https://doi.org/10.1115/1.3601137
- G. Lohofer, Theory of an electromagnetically deviated metal sphere. 1: Ab- sorbed power, SIAM J. Appl. Math. 49 (1989), 567-581. https://doi.org/10.1137/0149032
- P. A. McCoy, Polynomial approximation and growth of generalized axisym- metric potentials, Canad. J. Math. 31(1) (1979), 49-59. https://doi.org/10.4153/CJM-1979-006-7
- A. W. Niukkanen, Generalized hypergeometric series arising in physical and quantum chemical applications, J. Phys. A: Math. Gen. 16 (1983), 1813-1825. https://doi.org/10.1088/0305-4470/16/9/007
- A. K. Rathie and Y. S. Kim, Further results on Srivastava's triple hypergeo- metric series, Indian J. Pure Appl. Math. 35(8) (2004), 991-1002.
- M. S. Salakhitdinov and A. Hasanov, A solution of the Neumann-Dirichlet boundary value problem for generalized bi-axially symmetric Helmholtz equation, Complex Variables and Elliptic Equations 53(4) (2008), 355-364. https://doi.org/10.1080/17476930701769041
- H. M. Srivastava, Hypergeometric functions of three variables, Ganita 15(2) (1964), 97-108.
- H. M. Srivastava, Some integrals representing hypergeometric functions, Rend. Circ. Mat. Palermo 16(2) (1967), 99-115. https://doi.org/10.1007/BF02844089
- H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Aca- demic Publishers, Dordrecht, Boston and London, 2001.
- H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Se- ries, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane, and Toronto, 1985.
- M. Turaev, Decomposition formulas for Srivastava's hypergeometric function on Saran functions, Comput. Appl. Math. 233 (2009), 842-846. https://doi.org/10.1016/j.cam.2009.02.050
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Second Edition, Cambridge University Press, Cambridge, London and New York, 1944.
- A. Weinstein, Discontinuous integrals and generalized potential theory, Trans. Amer. Math. Soc. 63 (1946), 342-354.
- A. Weinstein, Generalized axially symmetric potential theory, Bull. Amer. Math. Soc. 59 (1953), 20-38. https://doi.org/10.1090/S0002-9904-1953-09651-3
- R. J. Weinacht, Fundamental solutions for a class of singular equations, Contrib. Differential Equations 3 (1964), 43-55.