DOI QR코드

DOI QR Code

STABILITY OF A CUBIC FUNCTIONAL EQUATION IN p-BANACH SPACES

  • Lee, Sang-Baek (Department of Mathematics Chungnam National University) ;
  • Park, Won-Gil (Department of Mathematics Education Mokwon University)
  • Received : 2011.05.19
  • Accepted : 2011.11.18
  • Published : 2011.12.30

Abstract

In this paper, we investigate the stability of a cubic functional equation $$f(x+ny)+f(x-ny)+f(nx)=n^2f(x+y)+n^2f(x-y)+(n^3-2n^2+2)f(x)$$ in p-Banach spaces and in Banach modules, where $n{\geq}2$ is an integer.

Keywords

References

  1. Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol. 1, Colloq. Publ. 48, Amer. Math. Soc. Providence, 2000.
  2. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
  3. Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434. https://doi.org/10.1155/S016117129100056X
  4. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  5. D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  6. K.-W. Jun, S.-B. Lee and W.-P. Park, Solution and stability of a cubic functional equation, Acta Math. Sin., Eng. Ser. 26 (2010), 1255-1262. https://doi.org/10.1007/s10114-010-8621-6
  7. R. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266. https://doi.org/10.7146/math.scand.a-12116
  8. N. Kalton, N. T. Peck, and W. Roberts, An F-Space Sampler, London Mathematical Society Lecture Note Series 89, Cambridge University Press, 1984.
  9. Th.M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  10. S. Rolewicz, Metric Linear Spaces, PWN-Polish Sci. Publ., Warszawa, Reidel, Dordrecht, 1984.
  11. J. Tabor, Stability of the Cauchy functional equation in quasi-Banach spaces, Ann. Polon. Math. 83 (2004), 243-255. https://doi.org/10.4064/ap83-3-6
  12. S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1968, p.63.