References
- Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol. 1, Colloq. Publ. 48, Amer. Math. Soc. Providence, 2000.
- S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
- Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434. https://doi.org/10.1155/S016117129100056X
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- K.-W. Jun, S.-B. Lee and W.-P. Park, Solution and stability of a cubic functional equation, Acta Math. Sin., Eng. Ser. 26 (2010), 1255-1262. https://doi.org/10.1007/s10114-010-8621-6
- R. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266. https://doi.org/10.7146/math.scand.a-12116
- N. Kalton, N. T. Peck, and W. Roberts, An F-Space Sampler, London Mathematical Society Lecture Note Series 89, Cambridge University Press, 1984.
- Th.M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- S. Rolewicz, Metric Linear Spaces, PWN-Polish Sci. Publ., Warszawa, Reidel, Dordrecht, 1984.
- J. Tabor, Stability of the Cauchy functional equation in quasi-Banach spaces, Ann. Polon. Math. 83 (2004), 243-255. https://doi.org/10.4064/ap83-3-6
- S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1968, p.63.