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STABILITY OF A CUBIC FUNCTIONAL EQUATION IN
p-BANACH SPACES

Sang-Baek Lee* and Won-Gil Park**

Abstract. In this paper, we investigate the stability of a cubic
functional equation

f(x + ny) + f(x− ny) + f(nx)

= n2f(x + y) + n2f(x− y) + (n3 − 2n2 + 2)f(x)

in p-Banach spaces and in Banach modules, where n ≥ 2 is an
integer.

1. Introduction

In 1940, S.M. Ulam [12] gave a wide ranging talk before the Math-
ematics Club of the University of Wisconsin in which he discussed a
number of important unsolved problems. Among those was the ques-
tion concerning the stability of group homomorphisms:

Let G1 be a group and let G2 be a metric group with the metric d(·, ·).
Given ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2

satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1 then there
is a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1?

The case of approximately additive mappings was solved by D. H.
Hyers [5] under the assumption that G1 and G2 are Banach spaces. In
1978, Th. M. Rassias [9] gave a generalization of the Hyers’ result. In
1994, P. Găvruta [4] also obtained a further generalization of the Rassias’
result.

We first recall some basic facts concerning quasi-Banach spaces and
some preliminary results.
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Definition 1.1. ([1, 10]) Let X be a linear space. A quasi-norm ‖ ·‖
is a real-valued function on X satisfying the following:
(i) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(ii) ‖λx‖ = |λ| · ‖x‖ for all scalar λ and all x ∈ X.
(iii) There is a constant K ≥ 1 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for
all x, y ∈ X.

A quasi-normed space is a linear space together with a specified quasi-
norm. A quasi-Banach space means a complete quasi-normed space. A
quasi-norm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if the inequality

‖x + y‖p ≤ ‖x‖p + ‖y‖p

holds for all x, y ∈ X. In this case, a quasi-Banach space is called a
p-Banach space. Clearly, p-norms are continuous, and in fact, if ‖ · ‖ is a
p-norm on X, then the formula d(x, y) := ‖x− y‖p defines a translation
invariant metric for X and ‖ · ‖p is a p-homogeneous F -norm. The
Aoki-Rolewicz theorem [10] (see also [1, 8]) yields that each quasi-norm
is equivalent to some p-norm for some 0 < p ≤ 1. Since it is much
easier to work with p-norms than quasi-norms, henceforth we restrict
our attention mainly to p-norms. In [11], J. Tabor has investigated a
version of the Hyers-Rassias-Gajda theorem (see [3]) in quasi-Banach
spaces.

The cubic function f(x) = cx3(c ∈ R) satisfies the functional equation

(1.1) f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x).

In this paper, we will prove the Hyers-Ulam-Rassias stability of the cubic
functional equation
(1.2)
f(x+ny)+f(x−ny)+f(nx) = n2f(x+y)+n2f(x−y)+(n3−2n2+2)f(x)

in p-Banach spaces and in Banach modules, where n ≥ 2 is an integer.

2. Results in p-Banach spaces

From this section, let X be a linear space and Y a p-Banach space.
For a mapping f : X → Y , we define

Df(x, y) := f(x + ny) + f(x− ny) + f(nx)
−n2f(x + y)− n2f(x− y)− (n3 − 2n2 + 2)f(x)

for all x, y ∈ X.
Now we have the stability of the equation (1.2).
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Theorem 2.1. Let f : X → Y be a mapping for which there exists
a function ϕ : X ×X → [0,∞) such that

ϕ̃(x, y) :=
∞∑

i=1

1
n3pi

ϕ(ni−1x, ni−1y)p < ∞

and

(2.1) ‖Df(x, y)‖ ≤ ϕ(x, y)

for all x, y ∈ X. Then there exists a unique cubic mapping C : X → Y
satisfying (1.2) such that

‖f(x)− C(x)‖ ≤ ϕ̃(x, 0)
1
p(2.2)

for all x ∈ X.

Proof. Letting y = 0 in (2.1), we gain
∥∥∥∥f(x)− 1

n3
f(nx)

∥∥∥∥
p

≤ 1
n3p

ϕ(x, 0)p

for all x ∈ X. Replacing x by nx in the above inequality and then
dividing by n3p, we get

∥∥∥∥
1
n3

f(nx)− 1
n6

f(n2x)
∥∥∥∥

p

≤ 1
n6p

ϕ(nx, 0)p

for all x ∈ X. Adding the foregoing two inequalities, we have
∥∥∥∥f(x)− 1

n6
f(n2x)

∥∥∥∥
p

≤ 1
n3p

ϕ(x, 0)p +
1

n6p
ϕ(nx, 0)p

for all x ∈ X. Continuing in this way, one can obtain that

(2.3)
∥∥∥∥f(x)− 1

n3r
f(nrx)

∥∥∥∥
p

≤
r∑

i=1

1
n3pi

ϕ(ni−1x, 0)p

for all x ∈ X and all r ∈ N. For s = 1, 2, 3, · · · , dividing the preceding
inequality by n3ps and then substituting x by nsx, we see that

∥∥∥∥
1

n3s
f(nsx)− 1

n3(s+r)
f(ns+rx)

∥∥∥∥
p

≤
r∑

i=1

1
n3pi

1
n3ps

ϕ(ni+s−1x, 0)p

for all x ∈ X and all r ∈ N. Taking s → ∞ in the previous inequality,
we conclude that

{
1

n3r f(nrx)
}∞

r=1
is a Cauchy sequence in the p-Banach

space Y for all x ∈ X. This implies that the sequence
{

1
n3r f(nrx)

}∞
r=1



706 Sang-Baek Lee and Won-Gil Park

converges in Y for all x ∈ X. Thus we can define a function C : X → Y
by

C(x) := lim
r→∞

1
n3r

f(nrx)

for all x ∈ X. Then

‖DC(x, y)‖p = lim
r→∞

1
n3pr

‖Df(nrx, nry)‖p

≤ lim
r→∞

1
n3pr

ϕ(nrx, nry)p = 0

for all x, y ∈ X. Hence the mapping C : X → Y satisfies (1.2). By [6],
the mapping C also satisfies 1.1). Taking r → ∞ in (2.3), we get the
inequality (2.2).

It only remains to show the uniqueness of the cubic mapping C :
X → Y . Let C ′ : X → Y be another cubic mapping satisfying (1.2) and
(2.2). Then

‖C(x)− C ′(x)‖p =
1

n3pr
‖C(nrx)− C ′(nrx)‖p ≤ 2

n3pr
ϕ̃(nrx, 0)

for all x ∈ X. Taking r →∞ in the above inequality, we conclude that
C(x) = C ′(x) for all x ∈ X.

Corollary 2.2. Let X be a quasi-normed space. Let θ, p, q be real
numbers with θ ≥ 0, 0 < p < 3 and q 6= 0 and let f : X → Y be a
mapping such that

‖Df(x, y)‖ ≤ θ(‖x‖p + ‖y‖q)

for all x, y ∈ X. Then there exists a unique cubic mapping C : X → Y
satisfying (1.2) such that

‖f(x)− C(x)‖ ≤ θ

(n3p − np2)
1
p

‖x‖p

for all x ∈ X.

Theorem 2.3. Let f : X → Y be a mapping for which there exists
a function ϕ : X ×X → [0,∞) such that

ϕ̃(x, y) :=
∞∑

i=1

n3p(i−1)ϕ

(
x

ni
,

y

ni

)p

< ∞

and

‖Df(x, y)‖ ≤ ϕ(x, y)
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for all x, y ∈ X. Then there exists a unique cubic mapping C : X → Y
satisfying (1.2) such that

‖f(x)− C(x)‖ ≤ ϕ̃(x, 0)
1
p

for all x ∈ X.

Proof. The proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let X be a quasi-normed space. Let θ, p, q be real
numbers with θ ≥ 0, p > 3 and q 6= 0 and let f : X → Y be a mapping
such that

‖Df(x, y)‖ ≤ θ(‖x‖p + ‖y‖q)

for all x, y ∈ X. Then there exists a unique cubic mapping C : X → Y
satisfying (1.2) such that

‖f(x)− C(x)‖ ≤ θ

(np2 − n3p)
1
p

‖x‖p

for all x ∈ X.

3. Results in Banach modules over a Banach algebra

In this section, let A be a unital Banach algebra with norm | · |,
A1 := {a ∈ A : |a| = 1}, and let AM and AN be left Banach A-modules
with norms || · || and ‖ · ‖, respectively.

For a mapping f : AM→ AN , we define

Daf(x, y) := a3f(x + ny) + a3f(x− ny) + a3f(nx)
−n2f(ax + ay)− n2f(ax− ay)− (n3 − 2n2 + 2)f(ax)

for all a ∈ A1 and all x, y ∈ AM.

Definition 3.1. A cubic mapping C : AM→ AN is called A-cubic
if C(ax) = a3C(x) for all a ∈ A and all x ∈ AM.

From now on, let A be a complex unital Banach ∗-algebra with norm
| · |.

Theorem 3.2. Let f : AM→ AN be a mapping satisfying f(0) = 0
for which there exists a function φ : (AM)2 → [0,∞) such that

(3.1) φ̃(x, y) =
∞∑

j=0

1
n3j

φ(njx, njy) < ∞
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and

(3.2) ‖Daf(x, y)‖ ≤ φ(x, y)

for all a ∈ A1 and all x, y ∈ AM. If f(tx) is continuous in t ∈ R
for each fixed x ∈ AM, then there exists a unique A-cubic mapping
C : AM→ AN such that

(3.3) ‖f(x)− C(x)‖ ≤ 1
n3

φ̃(x, 0)

for all x ∈ AM.

Proof. Similar to the proof of [9, Theorem 3.1], there exists a unique
cubic mapping C : AM→ AN satisfying (3.3). In fact, the mapping C
is given by

C(x) = lim
r→∞

(
1
n3

)r

f(nrx)

for all x ∈ AM, where a = 1. Under the assumption that f(tx) is
continuous in t ∈ R for each fixed x ∈ AM, by the same reasoning as the
proof of [2], the cubic mapping C : AM→ AN satisfies C(tx) = t3C(x)
for all t ∈ R and all x ∈ AM. That is, C is R-cubic. By letting x = nrx
and y = 0 in (3.2), we have

∥∥∥∥f(nrax)− 1
n3

a3f(nr+1x)
∥∥∥∥ ≤

1
n3

φ(nrx, 0)

for all a ∈ A1 and all x ∈ AM. Note that for each a ∈ A and each
z ∈ AM, we have

‖az‖ ≤ K|a| · ‖z‖
for some K > 0. Then we get

∥∥f(nrax)− a3f(nrx)
∥∥

≤
∥∥∥∥f(nrax)− 1

n3
a3f(nr+1x)

∥∥∥∥ +
∥∥∥∥

1
n3

a3f(nr+1x)− a3f(nrx)
∥∥∥∥

≤ 1
n3

φ(nrx, 0)(1 + K)

for all a ∈ A1 and all x ∈ AM. Hence, for all a ∈ A1 and all x ∈ AM,
n−3r‖f(nrax)− a3f(nrx)‖ → 0 as r →∞. We may conclude that

C(ax) = lim
r→∞

f(nrax)
n3r

= a3 lim
r→∞

f(nrx)
n3r
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for all a ∈ A1 and all x ∈ AM. Note that C is R-cubic and C(ax) =
a3C(x) for all a ∈ A1. Thus we have

C(ax) = C

(
|a| · a

|a|x
)

= |a|3C
(

a

|a|x
)

= a3C(x)

for all nonzero a ∈ A and all x ∈ AM. Also, C(0x) = 03C(x) for all
x ∈ AM. Thus the cubic mapping C : AM→ AN is the unique A-cubic
mapping as desired.

4. Results in Banach modules over a C∗-algebra

In this section, we will investigate the stability of the given cubic
functional equation (1.2) over a C∗-algebra. Throughout this section,
let A be a unital C∗-algebra with a norm | · |, and let AM and AN
be left Banach A-modules with norms || · || and ‖ · ‖, respectively. Put
A1 := {a ∈ A| |a| = 1}, Ain := {a ∈ A| a is invertible in A}, Asa :=
{a ∈ A| a∗ = a}, U(A) := {a ∈ A| aa∗ = a∗a = 1}, A+ := {a ∈
Asa| Sp(a) ⊂ [0,∞)} and A+

1 := A1 ∩A+.
For explicitly later use, we state the following lemma.

Lemma 4.1. [7] Let a ∈ A and |a| < 1− 2
k for some integer k greater

than 2. Then there are unitary elements u1, · · · , uk ∈ A such that
ka = u1 + · · ·+ uk.

Theorem 4.2. Let A be of real rank 0 and let f : AM→ AN be a
mapping satisfying f(0) = 0 for which there exists a function φ : AM×
AM→ [0,∞) satisfying (3.1) and (3.2) for all a ∈ (A+

1 ∩Ain)∪{i} and all

x, y ∈ AM. For each fixed x ∈ AM, let the sequence
{f(nrx)

n3r

}
converge

uniformly on A1. If f(ax) is continuous in a ∈ A1 ∪ R for each fixed
x ∈ AM then there exists a unique A-cubic mapping C : AM → AN
such that

(4.1) ‖f(x)− C(x)‖ ≤ 1
n3

φ̃(x, 0)

for all x ∈ AM.

Proof. Similar to the proof of Theorem 3.2, there exists a unique
cubic mapping C : AM→ AN satisfying (4.1) and

(4.2) C(ax) = a3C(x)

for all a ∈ (A+
1 ∩Ain)∪{i} and all x ∈ AM. From the continuity and the

uniform convergence, one can show that C(ax) is continuous in a ∈ A1

for each x ∈ AM.
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Let b ∈ A+
1 \ Ain. Since Ain ∩ Asa is dense in Asa, there exists

a sequence {bm} in Ain ∩ Asa such that bm → b as m → ∞. Put
dm := 1

|bm|bm. Then dm → b as m → ∞. Put am =
√

d∗mdm. Then
am → b as m →∞ and am ∈ A+

1 ∩Ain. By the continuity of C,

(4.3) lim
m→∞C(dmx) = C

(
lim

m→∞ dmx
)

= C(bx)

for all x ∈ AM. By (4.2),
∥∥C(amx)− b3C(x)

∥∥ =
∥∥a3

mC(x)− b3C(x)
∥∥ → ∥∥b3C(x)− b3C(x)

∥∥ = 0

as m →∞ for all x ∈ AM. By (4.3) and the above equation,
∥∥C(bx)− b3C(x)

∥∥ ≤ ‖C(bx)− C(amx)‖+
∥∥C(amx)− b3C(x)

∥∥
→ 0 as m →∞

for all x ∈ AM. By (4.2) and the above equation, C(ax) = a3C(x) for
all a ∈ A+

1 ∪ {i} and all x ∈ AM.
The rest of the proof is similar to the proof of Theorem 3.2, which

completes the proof.

Theorem 4.3. Let A be of real rank 0, commutative. Let D := {a ∈
A |Sp(a) ⊂ C\ [0,∞)}, E := {a ∈ A |Sp(a) ⊂ C\ (−∞, 0]} and D∪E is
dense in Ain. And let f : AM→ AN be a mapping satisfying f(0) = 0
for which there exists a function φ : AM×AM→ [0,∞) satisfying (3.1)
and (3.2) for all a ∈ exp(U(A)) ∪ {1} and all x, y ∈ AM\ {0}. For each

fixed x ∈ AM, let the sequence
{

f(nrx)
n3r

}
converge uniformly on A1. If

f(ax) is continuous in a ∈ A1 ∪ R for each fixed x ∈ AM, then there
exists a unique A-cubic mapping C : AM→ AN such that

(4.4) ‖f(x)− C(x)‖ ≤ 1
n3

φ̃(x, 0)

for all x ∈ AM\ {0}.
Proof. By the same reasoning as in the proof of Theorem 3.2, there

exists a unique cubic mapping C : AM→ AN satisfying the inequality
(4.4) for all x ∈ AM. By a similar method to the proof of Theorem 3.2,
the cubic mapping C satisfies C(ax) = a3C(x) for all a ∈ exp(U(A)) ∪
{1} and all x ∈ AM.

For every element a ∈ A1 ∩D, there is a positive integer m such that
∣∣∣∣
1 + log a

m

∣∣∣∣ < 1− 2
m

.
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By Lemma 4.1, there are unitary element υ1, · · · , υm ∈ U(A) such that
1 + log a = υ1 + · · ·+ υm. Then we have

C(eax) = C
(
e1+log ax

)
= C(eυ1+···+υmx) = C(eυ1 · · · eυmx)

= e3υ1 · · · e3υmC(x) = (eυ1+···+υm)3C(x)

=
(
e1+log a

)3
C(x) = e3a3C(x)

for all a ∈ A1 ∩D and all x ∈ AM\ {0}. Hence we obtain e3C(ax) =
C(eax) = e3a3C(x) for all a ∈ A1 ∩ D and all x ∈ AM \ {0}. Thus
C(ax) = a3C(x) for all a ∈ A1 ∩D and all x ∈ AM.

By the same process as the above argument, one can obtain that
C(ax) = a3C(x) for all a ∈ A1 ∩ E and all x ∈ AM. Since D ∪ E is
dense in Ain, C(ax) = a3C(x) for all a ∈ A1 ∩Ain and all x ∈ AM.

The rest of the proof is the same as in the proof of Theorem 4.2,
which completes the proof.
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