DOI QR코드

DOI QR Code

변형률 속도에 따른 형상기억합금 초탄성 거동의 실험 및 해석 연구

Experimental and Numerical Analysis for Superelastic Behaviors of SMAs with Strain-rate Dependence

  • 노진호 (한국항공대학교 항공우주 및 기계공학부) ;
  • 박정인 (한국항공대학교 항공우주 및 기계공학부) ;
  • 이수용 (한국항공대학교 항공우주 및 기계공학부)
  • 투고 : 2010.07.23
  • 심사 : 2010.11.25
  • 발행 : 2010.12.25

초록

변형률-속도에 따른 형상기억합금의 초탄성 거동 특성 변화를 실험적 그리고 수치적으로 살펴보았다. 변형률-속도를 고려한 형상기억합금의 수학 모델을 유도하였고, 형상기억합금의 실험결과를 바탕으로 변형률 속도에 따른 형상기억합금의 열-기계적 특성변화를 관찰하였다. 변형률-속도의 변화에 따라 형상기억합금 시편의 급격한 온도변화가 일어남을 확인하였고 이런 현상이 초탄성 거동 특성 변화에 큰 영향을 미침을 예측 할 수 있었다.

The influence of the strain-rate on the superelastic behaviors of shape memory alloys (SMAs) wires is experimentally and numerically investigated. The one-dimensional SMA constitutive equations considering strain-rate effect is developed. The evolution of stress-strain curves of SMA wires is examined with various strain-rates. Results show that the superelastic behaviors of SMAs may significantly be changed depending on the variation of strain-rate.

키워드

참고문헌

  1. Roh, J. -H., Han, J. -H., Lee, I., "Nonlinear Finite Element Simulation of Shape Adaptive Structures with SMA Strip Actuator", Journal of Intelligent Material Systems and Structures, Vol. 17, 2006, pp. 1007-1022. https://doi.org/10.1177/1045389X06063084
  2. Roh, J. -H., Kim, E. -H., Lee, I., "Low Velocity Impact Behaviors of Composite Structures with Embedded Shape Memory Alloy Films", 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference, 2008.
  3. Hill, J., Roh, J. -H., Wang, K. -W., "Position Control of Shape Memory Alloy Actuators with Load and Frequency Dependent Hysteresis Characteristics", SPIE International Symposium Smart Structures and Materials, 2009.
  4. Nashif, A. D., Jones, D. I., and Henderson, J. P., Vibration Damping, Wiley, 1985, pp. 74-78.
  5. Mukherjee, K., Sircar, S., and Dahotre, N. B., "Thermal Effects Associated with Stress-induced Martensitic Tranformation in a Ti-Ni Alloy", Materials Science and Engineering, Vol. 74, 1985, pp. 75-84. https://doi.org/10.1016/0025-5416(85)90111-9
  6. Entemeyer, D, Patoor, E., Eberhardt, A., and Berveiller, M., "Strain Rate Sensitivity in Superelasticity", International Journal of Plasticity, Vol. 16, 2000, pp. 1269-1288. https://doi.org/10.1016/S0749-6419(00)00010-3
  7. Tobushi, H., Nakahara, T., Shimeno, Y., and Hashimoto, T., "Low-cycle Fatigue of TiNi Shape Memory Alloy and Formulation of Fatigue Life", Journal of Engineering Materials and Technology, Vol. 122, 2000, pp. 186-191. https://doi.org/10.1115/1.482785
  8. Zhu, S., and Zhang, Y., "A Thermomechanical Constitutive Model for Superelastic SMA Wire with Strain-rate Dependence", Smart Materials and Structures, Vol. 16, 2007, pp. 1696-1707. https://doi.org/10.1088/0964-1726/16/5/023
  9. 노진호, “변형률 효과를 고려한 형상기억합금의 열-기계적 특성”, 한국항공우주학회지, 38(2), 2010, pp. 129-134. https://doi.org/10.5139/JKSAS.2010.38.2.129
  10. Brinson, L. C., "One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redeined Martensite Internal Variable", Journal of Intelligent Material Systems and Structures, Vol. 4, 1993, pp. 229-242. https://doi.org/10.1177/1045389X9300400213