DOI QR코드

DOI QR Code

A Study on the Reduction of Reaction Mechanism for the Ignition of Dimethyl Ether

디메틸 에테르 착화에 관한 반응기구 축소 연구

  • Received : 2010.05.26
  • Accepted : 2010.10.04
  • Published : 2011.01.01

Abstract

The numerical analysis of the reduction of reaction mechanism for the ignition of dimethyl ether (DME) was performed. On the basis of a detailed reaction mechanism involving 79 species and 351 reactions, the peak molar concentration and sensitivity analysis were conducted in a homogeneous reactor model. The reduced reaction mechanism involving 44 species and 166 reactions at the threshold value $7.5{\times}10^{-5}$ of the molar peak concentration was established by comparing the ignition delays the reduced mechanism with those the detailed mechanism. The predicted results of the reduced mechanism applied to the single-zone homogeneous charge compression ignition (HCCI) engine model were in agreement with those of the detailed mechanism. Therefore, this reduced mechanism can be used to accurately simulate the ignition and combustion process of compression ignition engine using DME fuel.

디젤의 대체연료인 디메틸 에테르의 반응기구 축소에 관한 수치해석을 수행하였다. 상세반응기구(79 개의 화학종과 351 개의 반응단계)를 기초로, 최대몰농도 해석과 민감도 해석을 균질 반응기 모델에 적용하였다. 축소반응기구는 상세반응기구의 착화지연기간과 비교하여 구축하였는데, 기준값으로 $7.5{\times}10^{-5}$을 적용했을 때 44 개의 화학종과 166 개의 반응단계로 구성된다. 축소반응기구의 계산 정확도를 검증하기 위하여 두 반응기구를 단일영역 균일예혼합 압축착화 엔진모델에 적용하였고, 축소반응기구의 계산결과는 상세반응기구의 결과와 일치하였다. 따라서 본 연구의 축소반응기구는 계산의 정확도의 손실 없이 DME 를 연료로 사용하는 압축착화엔진의 착화 및 연소 과정을 모사하는데 이용될 수 있다.

Keywords

References

  1. Arcoumanis, C., Bae, C., Crookes, R. and Kinoshita, E., 2008, “The Potential of Di-methyl Ether (DME) as an Alternative Fuel for Compression-Ignition Engines: A Review,” Fuel, Vol. 87, pp. 1014-1030. https://doi.org/10.1016/j.fuel.2007.06.007
  2. Kim, M. Y., Bang, S. H. and Lee, C. S., 2007, “Experimental Investigation of Spray and Combustion Characteristics of Dimethyl Ether in a Common-Rail Diesel Engine,” Energy & Fuels, Vol. 21, pp. 793-800. https://doi.org/10.1021/ef060310o
  3. Dryer, F. L., Fischer, S. L. and Curran, H. J., 2000, “The Reaction Kinetics of Dimethyl Ether. I: High-Temperature Prolysis and Oxidation in Flow Reactors,” International Journal of Chemical Kinetics, Vol. 32, pp. 713-740. https://doi.org/10.1002/1097-4601(2000)32:12<713::AID-KIN1>3.0.CO;2-9
  4. Curran, H. J., Fischer, S. L. and Dryer, F. L., 2000, “The Reaction Kinetics of Dimethyl Ether. II: Low-Temperature Oxidation in Flow Reactors,” International Journal of Chemical Kinetics, Vol. 32, pp. 741-789. https://doi.org/10.1002/1097-4601(2000)32:12<741::AID-KIN2>3.0.CO;2-9
  5. Ryu, B. W., Youn, I. M., Park, S. W. and Lee, C. S., 2009, “Numerical Analysis for Combustion Characteristics of DME fuel in a Compression Ignition Engine Using a Detailed Chemical Kinetic Mechanism,” KSME Spring Conference: Energy and Power Engineering Division, pp. 204-209.
  6. Lim, O. T., 2008, “The Investigation of Diesel Spray Combustion in DME HCCI Combustion,” Transactions of the KSME (B), Vol. 32, No. 4, pp. 241-248. https://doi.org/10.3795/KSME-B.2008.32.4.241
  7. Hwang, C. H., Lee, C. E. and Kum, S. M., 2007, “NOx Emission Characteristics of Dimethyl Ether/Air Nonpremixed Flames,” Transactions of the KSME (B), Vol. 31, No. 11, pp. 926-935. https://doi.org/10.3795/KSME-B.2007.31.11.926
  8. Lutz, A. E., Kee, R. J. and Miller, J. A., 1987, “SENKIN: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis,” SAND87-8248.
  9. Naik, C. V., Puduppakkam, K., Wang, C., Kottalam, J. Liang, L., Hodgson, D. and Meeks, E., “Applying Detailed Kinetics to Realistic Engine Simulation: the Surrogate Blend Optimizer and Mechanism Reduction Strategies,” SAE Paper, 2010-01-0541.
  10. Lu, T. and Law, C. K., 2005, “A Directed Relation Graph Method for Mechanism Reduction,” Proceedings of the Combustion Institute, Vol. 30, pp. 1333-1341. https://doi.org/10.1016/j.proci.2004.08.145
  11. Valorani, M., Creta, F., Goussis, D. A., Lee, J. C. and Najm, H. N., 2006, “An Automatic Procedure for the Simplification of Chemical Kinetics Mechanisms Based on CSP,” Combustion and Flames, Vol. 146, pp. 29-51. https://doi.org/10.1016/j.combustflame.2006.03.011
  12. Vajda, S., Valko, P. and Turanyi, T., 1985, “Principal Component Analysis of Kinetic Models,” International Journal of Chemical Kinetics, Vol. 17, pp. 55-81. https://doi.org/10.1002/kin.550170107
  13. Maas, U. and Pope, S. B., 1992, “Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space, Combustion and Flame, Vol. 88, pp. 239-264. https://doi.org/10.1016/0010-2180(92)90034-M
  14. Ahmed, S. S., Mauss, F., Moreac, G., and Zeuch, T., 2007, “A Comprehensive and Compact N-Heptane Oxidation Model Derived Using Chemical Lumping,” Physical Chemistry Chemical Physics, Vol. 9, pp. 1107-1126. https://doi.org/10.1039/b614712g
  15. Yamaguchi, T., Matsumoto, A., Takada, Y. and Wakisaka, T., 2007, “Reduction of Detailed Elementary Reaction Schemes by Newly-developed Automatic Scheme Reduction Tool “ASRT”,” SAE Paper, 2007-01-1879.
  16. Kim, H., Cho, S. and Min, K., 2003, “Reduced Chemical Kinetic Model of DME for HCCI Combustion,” SAE Paper, 2003-01-1822.00
  17. Warnatz, J., Mass, U. and Dibble, R. W., 1999, Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, Springer-Verlag, pp. 230-235.