DOI QR코드

DOI QR Code

In silico Analysis on hERG Channel Blocking Effect of a Series of T-type Calcium Channel Blockers

  • Jang, Jae-Wan (Life & Health Division, Korea Institute of Science and Technology) ;
  • Song, Chi-Man (Life & Health Division, Korea Institute of Science and Technology) ;
  • Choi, Kee-Hyun (Life & Health Division, Korea Institute of Science and Technology) ;
  • Cho, Yong-Seo (Life & Health Division, Korea Institute of Science and Technology) ;
  • Baek, Du-Jong (Department of Chemistry, College of Natural Sciences, Sangmyung University) ;
  • Shin, Kye-Jung (Life & Health Division, Korea Institute of Science and Technology) ;
  • Pae, Ae-Nim (Life & Health Division, Korea Institute of Science and Technology)
  • 투고 : 2010.11.02
  • 심사 : 2010.11.15
  • 발행 : 2011.01.20

초록

Human ether-a-go-go related gene (hERG) potassium channel blockade, an undesirable side effect which might cause sudden cardiac death, is one of the major concerns facing the pharmaceutical industry. The purpose of this study is to develop an in silico QSAR model which uncovers the structural parameters of T-type calcium channel blockers to reduce hERG blockade. Comparative molecular similarity indices analysis (CoMSIA) was conducted on a series of piperazine and benzimidazole derivatives bearing methyl 5-(ethyl(methyl)amino)-2-isopropyl-2-phenylpentanoate moieties, which was synthesized by our group. Three different alignment methods were applied to obtain a reliable model: ligand based alignment, pharmacophore based alignment, and receptor guided alignment. The CoMSIA model with receptor guided alignment yielded the best results : $r^2$ = 0.955, $q^2$ = 0.781, $r^2_{pred}$ = 0.758. The generated CoMSIA contour maps using electrostatic, hydrophobic, H-bond donor, and acceptor fields explain well the structural requirements for hERG nonblockers and also correlate with the lipophilic potential map of the hERG channel pore.

키워드

참고문헌

  1. Sanguinetti, M. C.; Martin, T. F. Nature 2006, 440, 463. https://doi.org/10.1038/nature04710
  2. Warmke, J. W.; Ganetzky, B. Proc. Natl. Acad. Sci. 1994, 91, 3438. https://doi.org/10.1073/pnas.91.8.3438
  3. Curran, M. E.; Splawski, I.; Timothy, K. W.; Vincen, G. M.; Green, E. D.; Keating, M. T. Cell. 1995, 80, 795. https://doi.org/10.1016/0092-8674(95)90358-5
  4. Aronov, A. M. Drug Discov. Today 2005, 10, 149. https://doi.org/10.1016/S1359-6446(04)03278-7
  5. Mitcheson, J. S. Chem. Res. Toxicol. 2008, 21, 1005. https://doi.org/10.1021/tx800035b
  6. Long, S. B.; Campbell, E. B.; Mackinnon, R. Science 2005, 309, 897. https://doi.org/10.1126/science.1116269
  7. Doyle, D. A.; Morais Cabral, J.; Pfuetzner, R. A.; Kuo, A.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon, R. Science 1998, 280, 69. https://doi.org/10.1126/science.280.5360.69
  8. Jiang, Y. X.; Lee, A.; Chen, J. Y.; Cadene, M.; Chait, B. T.; Mac-Kinnon, R. Nature 2002, 417, 523. https://doi.org/10.1038/417523a
  9. Jiang, Y.; Lee, A.; Chen, J.; Ruta, V.; Cadene, M.; Chait, B. T.; MacKinnon, R. Nature 2003, 423, 33. https://doi.org/10.1038/nature01580
  10. Imai, Y. N.; Ryu, S. H.; Oiki, S. J. Med. Chem. 2009, 52, 1630. https://doi.org/10.1021/jm801236n
  11. Gepp, M. M.; Hutter, M. C. Bioorg. Med. Chem. 2006, 14, 5325. https://doi.org/10.1016/j.bmc.2006.03.043
  12. Thai, K. M.; Ecker, G. F. Bioorg. Med. Chem. 2008, 16, 4107. https://doi.org/10.1016/j.bmc.2008.01.017
  13. Yap, C. W.; Cai, C. Z.; Xue, Y.; Chen, Y. Z. Toxicol. Sci. 2004, 79, 170. https://doi.org/10.1093/toxsci/kfh082
  14. Li, Q.; Jorgensen, F. S.; Oprea, T.; Brunak, S.; Taboureau, O. Mol. Pharm. 2008, 5, 117. https://doi.org/10.1021/mp700124e
  15. Tobita, M.; Nishikawa, T.; Nagashima, R. Bioorg. Med. Chem. Lett. 2005, 15, 2886. https://doi.org/10.1016/j.bmcl.2005.03.080
  16. Sun, H. ChemMedChem. 2006, 1, 315. https://doi.org/10.1002/cmdc.200500047
  17. Roche, O.; Trube, G.; Zuegge, J.; Pflimlin, P.; Alanine, A.; Schneider, G. ChemBioChem. 2002, 3, 455. https://doi.org/10.1002/1439-7633(20020503)3:5<455::AID-CBIC455>3.0.CO;2-L
  18. O’Brien, S. E.; de Groot, M. J. J. Med. Chem. 2005, 48, 1287. https://doi.org/10.1021/jm049254b
  19. Keseru, G. M. Bioorg. Med. Chem. Lett. 2003, 13, 2773. https://doi.org/10.1016/S0960-894X(03)00492-X
  20. Bains, W.; Basman, A.; White, C. Prog. Biophys. Mol. Biol. 2004, 86, 205. https://doi.org/10.1016/j.pbiomolbio.2003.09.001
  21. Ekins, S.; Crumb, W. J.; Sarazan, R. D.; Wikel, J. H.; Wrighton, S. A. J. Pharmacol. Exp. Ther. 2002, 301, 427. https://doi.org/10.1124/jpet.301.2.427
  22. Cavalli, A.; Poluzzi, E.; De Ponti, F.; Recanatini, M. J. Med. Chem. 2002, 45, 3844. https://doi.org/10.1021/jm0208875
  23. Pearlstein, R. A.; Vaz, R. J.; Kang, J.; Chen, X.-L.; Preobrazhenskaya, M.; Shchekotikhin, A. E.; Korolev, A. M.; Lysenkova, L. N.; Miroshnikova, O. V.; Hendrix, J.; Rampe, D. Bioorg. Med. Chem. Lett. 2003, 13, 1829. https://doi.org/10.1016/S0960-894X(03)00196-3
  24. Cianchetta, G.; Li, Y.; Kang, J.; Rampe, D.; Fravolini, A.; Cruciani, G.; Vaz, R. J. Bioorg. Med. Chem. Lett. 2005, 15, 3637. https://doi.org/10.1016/j.bmcl.2005.03.062
  25. Nisius, B.; Goller, A. H. J. Chem. Inf. Model. 2009, 49, 247. https://doi.org/10.1021/ci800304t
  26. Klebe, G.; Abraham, U.; Mietzner, T. J. Med. Chem. 1994, 37, 4130. https://doi.org/10.1021/jm00050a010
  27. Seierstad, M.; Agrafiotis, D. K. Chem. Bio. Drug Des. 2006, 67, 284. https://doi.org/10.1111/j.1747-0285.2006.00379.x
  28. Geelen, P.; Drolet, B.; Rail, J.; Berube, J.; Daleau, P.; Rousseau, G.; Cardinal, R.; O’Hara, G. E.; Turgeon, J. Circulation 2000, 102, 275. https://doi.org/10.1161/01.CIR.102.3.275
  29. Sarazan, R. D.; Crumb, W. J.; Beasley, C. M.; Emmick, J. T.; Ferguson, K. M.; Strnat, C. A.; Sausen, P. J. Eur. J. Pharmacol. 2004, 502, 163. https://doi.org/10.1016/j.ejphar.2004.09.005
  30. Lee, H. K.; Lee, Y. S.; Roh, E. J.; Rhim, H.; Lee, J. Y.; Shin, K. J. Bioorg. Med. Chem. Lett. 2008, 18, 4424. https://doi.org/10.1016/j.bmcl.2008.06.037
  31. SYBYL 8.1.1, Tripos Inc., 1699 South Hanley Road, St. Louis, Missouri, 63144
  32. Maestro, Schrodinger, LLC, Portland, OR.
  33. Barakat, M. T.; Dean, P. M. Comput.-Aided. Mol. Des. 1990, 4, 295. https://doi.org/10.1007/BF00125017
  34. Clark, M.; Cramer, R. D., III.; Van Opdenbosch, N. J. Comput. Chem. 1989, 10, 982. https://doi.org/10.1002/jcc.540100804
  35. Gasteiger, J.; Marsili, M. Tetrahedron 1980, 36, 3219. https://doi.org/10.1016/0040-4020(80)80168-2
  36. Dixon, S. L.; Smondyrev, A. M.; Knoll, E. H.; Rao, S. N.; Shaw, D. E.; Friesner, R. A. J. Comput. Aided Mol. Des. 2006, 20, 647. https://doi.org/10.1007/s10822-006-9087-6
  37. Luo, T.; Luo, A.; Liu, M.; Liu, X. Anesth. Analg. 2008, 106, 1161. https://doi.org/10.1213/ane.0b013e3181684974
  38. Milnes, J. T.; Witchel, H. J.; Leaney, J. L.; Leishman, D. J.; Hancox, J. C. Biochem. Biophys. Res. Commun. 2006, 351, 273. https://doi.org/10.1016/j.bbrc.2006.10.039
  39. Su, Z.; Chen, J.; Martin, R. L.; McDermott, J. S.; Cox, B. F.; Gopalakrishnan, M.; Gintant, G. A. Biochem. Pharmacol. 2006, 71, 278. https://doi.org/10.1016/j.bcp.2005.10.047
  40. Witchel, H. J.; Dempsey, C. E.; Sessions, R. B.; Perry, M.; Milnes, J. T.; Hancox, J. C.; Mitcheson, J. S. Mol. Pharmacol. 2004, 66, 1201. https://doi.org/10.1124/mol.104.001743
  41. Scholz, E. P.; Zitron, E.; Kiesecker, C.; Lueck, S.; Kathofer, S.; Thomas, D.; Weretka, S.; Peth, S.; Kreye, V. A.; Schoels, W.; Katus, H. A.; Kiehn, J.; Karle, C. A. Arch. Pharmacol. 2003, 368, 404. https://doi.org/10.1007/s00210-003-0805-5
  42. Kamiya, K.; Mitcheson, J. S.; Yasui, K.; Kodama, I.; Sanguinetti, M. C. Mol. Pharmacol. 2001, 60, 244. https://doi.org/10.1124/mol.60.2.244
  43. Bostrom, J.; Hogner, A.; Schmitt, S. J. Med. Chem. 2006, 49, 6716. https://doi.org/10.1021/jm060167o
  44. Sundriyal, S.; Bharatam, P. V. Eur. J. Med. Chem. 2009, 44, 42. https://doi.org/10.1016/j.ejmech.2008.03.014
  45. Datar, P.; Desai, P.; Coutinho, E.; lyer, K. J. Mol. Model. 2002, 10, 290.
  46. Bush, B. L.; Nachbar, R. B., Jr. J. Comput, Aided Mol. Des. 1993, 7, 587. https://doi.org/10.1007/BF00124364
  47. Liaison, version 4.5, Schrodinger, LLC, New York, NY, 2007.
  48. Aquist, J.; Medina, C.; Samuelsson, J.-E. Protein Eng. 1994, 7, 385. https://doi.org/10.1093/protein/7.3.385
  49. Zhou, R.; Friesner, R. A.; Ghosh, A.; Rizzo, R. C.; Jorgensen, W. L.; Levy, R. M. J. Phys. Chem. B 2001, 105, 10388. https://doi.org/10.1021/jp011480z
  50. Strike, version 1.5, Schrodinger, LLC, New York, NY, 2005.
  51. Bohm, M.; Sturzebecher, J.; Klebe, G. J. Med. Chem. 1999, 42, 458. https://doi.org/10.1021/jm981062r
  52. Phase, version 2.5, Schrodinger, LLC, New York, NY, User Manual 2005.
  53. Norinder, U. Perspect. Drug Discovery Des. 1998, 12/13/14, 25
  54. Bush, C. A.; Martin-Pastor, M.; Imberty, A. Annu. Rev. Biophys. Biomol. Struct. 1999, 28, 269. https://doi.org/10.1146/annurev.biophys.28.1.269
  55. Hyun, K. H.; Lee, D. Y.; Lee, B. S.; Kim, C. K. QSAR Comb. Sci. 2004, 23, 637. https://doi.org/10.1002/qsar.200430878
  56. Kunick, C.; Lauenroth, K.; Wieking, K.; Xie, X.; Schultz, C.; Gussio, R.; Zaharevitz, D.; Leost, M.; Meijer, L.; Weber, A.; Jorgensen, F. S.; Lemcke, T. J. Med. Chem. 2004, 47, 22. https://doi.org/10.1021/jm0308904
  57. Clark, M.; Cramer, R. D., III.; Jones, D. M.; Patterson, D. E.; Simeroth, P. E. Tetrahedron Comput. Methods 1990, 3, 47. https://doi.org/10.1016/0898-5529(90)90120-W
  58. Thomas, B. F.; Compton, D. R.; Martin, B. R.; Seamus, S. F. Mol. Pharmacol. 1991, 40, 656.
  59. Fernandez, D.; Ghanta, A.; Kauffman, G. W.; Sanguinetti, M. C. J. Biol. Chem. 2004, 279, 10120. https://doi.org/10.1074/jbc.M310683200
  60. Kamiya, K.; Niwa, R.; Mitcheson, J. S.; Sanguinetti, M. C. Mol. Pharmacol. 2006, 69, 1709. https://doi.org/10.1124/mol.105.020990
  61. Choe, H.; Nah, K. H.; Lee, S. N.; Lee, H. S.; Jo, S. H.; Leem, C. H.; Jang, Y. J. Biochem. Biophys. Res. Commun. 2006, 344, 72. https://doi.org/10.1016/j.bbrc.2006.03.146
  62. Hume, J. R. J. Pharmacol. Exp. Ther. 1985, 234, 134-140.
  63. Glaser, S.; Steinbach, M.; Opitz, C.; Wruck, U. Eur. J. Heart Fail. 2001, 3, 627. https://doi.org/10.1016/S1388-9842(01)00159-3
  64. PERCHENET, L.; CLEMENT-CHOMIENNE, O. J. Pharmacol. Exp. Ther. 2000, 295, 771.
  65. Chouabe, C.; Drici, M. D.; Romey, G.; Barhanin, J. Therapie. 2000, 55, 195.
  66. Zhang, S.; Zhou, Z.; Gong, Q.; Makielski, J. C.; January, C. T. Circ. Res. 1999, 84, 989. https://doi.org/10.1161/01.RES.84.9.989
  67. Yang, T.; Snyders, D.; Roden, D. M. J. Cardiovasc. Pharmacol. 2001, 38, 737. https://doi.org/10.1097/00005344-200111000-00010
  68. Chouabe, C.; Drici, M. D.; Romey, G.; Barhanin, J.; Lazdunski, M. Mol. Pharmacol. 1998, 54, 695.
  69. Walker, B. D.; Valenzuela, S. M.; Singleton, C. B.; Tie, H.; Bursill, J. A.; Wyse, K. R.; Qiu, M. R.; Breit, S. N.; Campbell, T. J. Br. J. Pharmacol. 1999, 127, 243. https://doi.org/10.1038/sj.bjp.0702502
  70. Ridley, J. M.; Dooley, P. C.; Milnes, J. T.; Witchel, H. J.; Hancox, J. C. J. Mol. Cell Cardiol. 2004, 36, 701. https://doi.org/10.1016/j.yjmcc.2004.02.009