DOI QR코드

DOI QR Code

Heterogeneous SnCl2/SiO2 versus Homogeneous SnCl2 Acid Catalysis in the Benzo[N,N]-heterocyclic Condensation

  • Darabi, Hossein Reza (Nano & Organic Synthesis Lab, Chemistry & Chemical Engineering Research Center of Iran) ;
  • Aghapoor, Kioumars (Nano & Organic Synthesis Lab, Chemistry & Chemical Engineering Research Center of Iran) ;
  • Mohsenzadeh, Farshid (Nano & Organic Synthesis Lab, Chemistry & Chemical Engineering Research Center of Iran) ;
  • Jalali, Mohammad Reza (Nano & Organic Synthesis Lab, Chemistry & Chemical Engineering Research Center of Iran) ;
  • Talebian, Shiva (Nano & Organic Synthesis Lab, Chemistry & Chemical Engineering Research Center of Iran) ;
  • Ebadi-Nia, Leila (Nano & Organic Synthesis Lab, Chemistry & Chemical Engineering Research Center of Iran) ;
  • Khatamifar, Ehsan (Shifa Pharmed Industrial Group Co.) ;
  • Aghaee, Ali (Shifa Pharmed Industrial Group Co.)
  • 투고 : 2010.09.20
  • 심사 : 2010.11.14
  • 발행 : 2011.01.20

초록

The scope of homogeneous Lewis acid-catalyzed benzo[N,N]-heterocyclic condensation was expanded to include the use of various metal salts not reported in the literature and $SnCl_2{\cdot}2H_2O$ was finally selected. Among various solid supports activated with $SnCl_2$, heterogeneous $SnCl_2/SiO_2$ proved to be the most effective and significantly higher conversions were achieved compared to $SnCl_2{\cdot}2H_2O$ itself. The results of TG-DTA and BET indicated that dispersed $SnCl_2$ coordinates with surface hydroxyl groups of silica leading to formation of stable Lewis acid sites. Low catalyst loading, operational simplicity, practicability and applicability to various substrates render this eco-friendly approach as an interesting alternative to previously applied procedures.

키워드

참고문헌

  1. Corma, A. Chem. Rev. 1995, 95, 559-614. https://doi.org/10.1021/cr00035a006
  2. Wilson, K.; Clark, J. H. Pure Appl. Chem. 2000, 72, 1313-1319. https://doi.org/10.1351/pac200072071313
  3. Okuhara, T. Chem. Rev. 2002, 102, 3641-3666. https://doi.org/10.1021/cr0103569
  4. Clark, J. H. Acc. Chem. Res. 2002, 35, 791-797. https://doi.org/10.1021/ar010072a
  5. Corma, A.; Garcia, H. Chem. Rev. 2003, 103, 4307-4365. https://doi.org/10.1021/cr030680z
  6. Sartori, G.; Ballini, R.; Bigi, F.; Bosica, G.; Maggi, R.; Righi, P. Chem. Rev. 2004, 104, 199-250. https://doi.org/10.1021/cr0200769
  7. Russowsky, D.; Lopes, F. A.; da Silva, V. S. S.; Canto, K. F. S.; Montes D’Oca, M. G.; Godoi, M. N. J. Braz. Chem. Soc. 2004, 15, 165-169. https://doi.org/10.1590/S0103-50532004000200002
  8. Arumugam, P.; Karthikeyan, G.; Atchudan, R.; Muralidharan, D.; Perumal, P. T. Chem. Lett. 2005, 34, 314-315. https://doi.org/10.1246/cl.2005.314
  9. Alam, M. M.; Varala, R.; Enugala, R.; Adapa, S. R. Lett. Org. Chem. 2006, 3, 187-190. https://doi.org/10.2174/157017806775789930
  10. Nagarapu, L.; Bantu, R.; Puttireddy, R. Appl. Catal. A: Gen. 2007, 332, 304-309. https://doi.org/10.1016/j.apcata.2007.08.033
  11. Upadhyay, K. K.; Mishra, R. K.; Kumar, A. Catal Lett. 2008, 121, 118-120. https://doi.org/10.1007/s10562-007-9307-2
  12. Azarifar, D.; Khosravi, K.; Soleimanei, F. Synthesis 2009, 2553-2556.
  13. Selvam, N. P.; Babu, T. H.; Perumal, P. T. Tetrahedron 2009, 65, 8524-8530. https://doi.org/10.1016/j.tet.2009.08.025
  14. Corma, A.; Domine, M. E.; Valencia, S. J. Catal. 2003, 215, 304.
  15. Endud, S.; Wong, K-L. Micropor. Mesopor. Mater. 2007, 101, 256-263. https://doi.org/10.1016/j.micromeso.2006.12.029
  16. Fan, B.; Zhang, J.; Li, R.; Fan, W. Catal. Lett. 2008, 121, 297-302. https://doi.org/10.1007/s10562-007-9337-9
  17. Taralkar, U. S.; Kalita, P.; Kumar, R.; Joshi, P. N. Appl. Catal. A: Gen. 2009, 358, 88-94. https://doi.org/10.1016/j.apcata.2009.02.001
  18. Fan, B.; Li, H.; Fan, W.; Zhang, J.; Li, R. Appl. Catal. A: Gen. 2010, 372, 94-102. https://doi.org/10.1016/j.apcata.2009.10.022
  19. Selvaraj, M.; Choe, Y. Appl. Catal. A: Gen. 2010, 373, 186-191. https://doi.org/10.1016/j.apcata.2009.11.014
  20. Urleb, U. In: Schaumann, E. (Ed.): Methods of Organic Chemistry (Houben-Weyl); Thieme: Stuttgart, New York, 1998, Vol. E9b / Part 2 (Hetarenes IV), pp 193-265.
  21. Sako, M. In: Yamamoto, Y. (Volume Ed.): Science of Synthesis: Houben-Weyl Methods of Molecular Transformations; Thieme: Stuttgart, New York, 2003, Vol. 16, pp 1269-1290.
  22. Martins, M. A. P.; Frizzo, C. P.; Moreira, D. N.; Buriol, L.; Machado, P. Chem. Rev. 2009, 109, 4140-4182. https://doi.org/10.1021/cr9001098
  23. Candeias, N. R.; Branco, L. C.; Gois, P. M. P.; Afonso, C. A. M.; Trindade, A. F. Chem. Rev. 2009, 109, 2703-2802. https://doi.org/10.1021/cr800462w
  24. Corona, P.; Carta, A.; Loriga, M.; Vitale, G.; Paglietti, G. Eur. J. Med. Chem. 2009, 44, 1579-1591. https://doi.org/10.1016/j.ejmech.2008.07.025
  25. Carta, A.; Piras, S.; Loriga, G.; Paglietti, G. Mini-Rev. Med. Chem. 2006, 6, 1179-1200. https://doi.org/10.2174/138955706778742713
  26. Yeo, B. R.; Hallett, A. J.; Kariuki, B. M.; Pope, S. J. A. Polyhedron 2010, 29, 1088-1094. https://doi.org/10.1016/j.poly.2009.11.013
  27. More, S. V.; Sastry, M. N. V.; Wang, C-C.; Yao, C-F. Tetrahedron Lett. 2005, 46, 6345-6348. https://doi.org/10.1016/j.tetlet.2005.07.026
  28. Bhosale, R. S.; Sarda, S. R.; Ardhapure, S. S.; Jadhav, W. N.; Bhusare, S. R.; Pawar, R. P. Tetrahedron Lett. 2005, 46, 7183-7186. https://doi.org/10.1016/j.tetlet.2005.08.080
  29. More, S. V.; Sastry, M. N. V.; Yao, C-F. Green Chem. 2006, 8, 91-95. https://doi.org/10.1039/b510677j
  30. Srinivas, C.; Kumar, C. N. S. S. P.; Jayathirtha Rao, V.; Palaniappan, S. J. Mol. Catal. A: Chem. 2007, 265, 227-230. https://doi.org/10.1016/j.molcata.2006.10.018
  31. Dong, F.; Kai, G.; Zhenghao, F.; Xinli, Z.; Zuliang, L. Catal. Commun. 2008, 9, 317-320. https://doi.org/10.1016/j.catcom.2007.07.003
  32. Kumar, A.; Kumar, S.; Saxena, A.; De, A.; Mozumdar, S. Catal. Commun. 2008, 9, 778-784. https://doi.org/10.1016/j.catcom.2007.08.021
  33. Huang, T-K.; Wang, R.; Shi, L.; Lu, X-X. Catal. Commun. 2008, 9, 1143-1147. https://doi.org/10.1016/j.catcom.2007.10.024
  34. Cai, J. J.; Zou, J. P.; Pan, X. Q.; Zhang, W. Tetrahedron Lett. 2008, 49, 7386-7390. https://doi.org/10.1016/j.tetlet.2008.10.058
  35. Ajaikumar, S.; Pandurangan, A. Appl. Catal. A: Gen. 2009, 357, 184-192. https://doi.org/10.1016/j.apcata.2009.01.021
  36. Aghapoor, K.; Darabi, H. R.; Mohsenzadeh, F.; Balavar, Y.; Daneshyar, H. Transit. Metal Chem. 2010, 35, 49-53. https://doi.org/10.1007/s11243-009-9294-9
  37. Darabi, H. R.; Aghapoor, K.; Mohsenzadeh, F.; Taala, F.; Asadollahnejad, N.; Badiei, A. Catal. Lett. 2009, 133, 84-89. https://doi.org/10.1007/s10562-009-0161-2
  38. Darabi, H. R.; Tahoori, F.; Aghapoor, K.; Taala, F.; Mohsenzadeh, F. J. Braz. Chem. Soc. 2008, 19, 1646-1652. https://doi.org/10.1590/S0103-50532008000800028
  39. Darabi, H. R.; Mohandessi, S.; Aghapoor, K.; Mohsenzadeh, F. Catal. Commun. 2007, 8, 389-392. https://doi.org/10.1016/j.catcom.2006.06.033
  40. Mohsenzadeh, F.; Aghapoor, K.; Darabi, H. R. J. Braz. Chem. Soc. 2007, 18, 297-303.
  41. Aghapoor, K.; Darabi, H. R.; Mohsenzadeh, F. Z. Naturforsch. 2005, 60b, 901-903.
  42. According to the "solvent selection tool" implemented by the researchers of Pfizer Global Research and Development, $CH_3OH$ is considered as a benign and safe solvent in medicinal chemistry. Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A.; Kleine, H.P.; Knight, C.; Nagy, M. A.; Perry, D. A.; Stefaniak, M. Green Chem. 2008, 10, 31-36. https://doi.org/10.1039/b711717e
  43. Chakraborti, A. K.; Bhagat, S.; Rudrawar, S. Tetrahedron Lett. 2004, 45, 7641-7644. https://doi.org/10.1016/j.tetlet.2004.08.097
  44. Sithambaram, S.; Ding, Y.; Li, W.; Shen, X.; Gaenzlera, F.; Suib, S. L. Green Chem. 2008, 10, 1029-1032. https://doi.org/10.1039/b805155k
  45. Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Org. Biomol. Chem. 2004, 788-796.
  46. Jeena, V.; Robinson, R. S. Beilstein J. Org. Chem. 2009, 5, No. 24.
  47. Hanmantha Rao, M.; Pandu Ranga Reddy, A.; Veeranagaiah, V. Indian J. Chem. 1992, 31B, 88-91.
  48. Rueping, M.; Tato, F.; Schoepke, F. R. Chem. Eur. J. 2010, 16, 2688-2691. https://doi.org/10.1002/chem.200902907
  49. Loriga, M.; Nuvole, A.; Paglietti, G.; Fadda, G.; Zanetti, S. Eur. J. Med. Chem. 1990, 25, 527-532. https://doi.org/10.1016/0223-5234(90)90147-U
  50. Chang, X.; Jiang, N.; Zheng, H.; He, Q.; Hu, Z.; Zhai, Y.; Cui, Y. Talanta 2007, 71, 38-43. https://doi.org/10.1016/j.talanta.2006.03.012
  51. Nasielski, J.; Heilporn, S.; Nasielski-Hinkens, R.; Geerts-Evrard, F. Tetrahedron 1987, 43, 4329-4338. https://doi.org/10.1016/S0040-4020(01)90308-4

피인용 문헌

  1. ChemInform Abstract: Heterogeneous SnCl2/SiO2 versus Homogeneous SnCl2 Acid Catalysis in the Benzo[N,N]-heterocyclic Condensation. vol.42, pp.22, 2011, https://doi.org/10.1002/chin.201122178
  2. Silica-supported antimony(III) chloride as a mild and reusable catalyst for the Paal–Knorr pyrrole synthesis vol.10, pp.1, 2012, https://doi.org/10.1007/s10311-011-0321-7
  3. A green synthesis of 3,4-dihydropyrimidine-2(1H)-one/thione derivatives using nanosilica-supported tin(II) chloride as a heterogeneous nanocatalyst vol.144, pp.12, 2013, https://doi.org/10.1007/s00706-013-1068-6
  4. Synthesis of quinoxalines using Gum Arabic as a nontoxic metal-free biocatalyst at room temperature in aqueous media pp.1610-3661, 2017, https://doi.org/10.1007/s10311-017-0677-4
  5. Fe3O4@SiO2/Schiff base complex of metal ions as an efficient and recyclable nanocatalyst for the green synthesis of quinoxaline derivatives vol.7, pp.3, 2011, https://doi.org/10.1080/17518253.2014.948078
  6. Nitrilotris(Methylenephosphonic Acid) as a New Highly Efficient and Recyclable BrØNested Acid Catalyst for the Synthesis Of Quinoxaline Derivatives under Mild and Green Conditions vol.190, pp.9, 2011, https://doi.org/10.1080/10426507.2014.990017
  7. Donor–Acceptor–Donor Thienopyrazines via Pd-Catalyzed C–H Activation as NIR Fluorescent Materials vol.81, pp.1, 2016, https://doi.org/10.1021/acs.joc.5b01958
  8. Rapid, efficient and eco-friendly procedure for the synthesis of quinoxalines under solvent-free conditions using sulfated polyborate as a recyclable catalyst vol.129, pp.2, 2017, https://doi.org/10.1007/s12039-017-1235-0
  9. A highly efficient protocol for the synthesis of new 3-(α-aroylamido)-4-hydroxycoumarin derivatives using SnCl2-SiO2 nanoparticles under solvent-free conditions vol.41, pp.6, 2011, https://doi.org/10.3184/174751917x14944355549131
  10. A Catalyst-Free Expeditious Green Synthesis of Quinoxaline, Oxazine, Thiazine, and Dioxin Derivatives in Water under Ultrasound Irradiation vol.51, pp.4, 2011, https://doi.org/10.1080/00304948.2019.1596469
  11. Natural vs. Synthetic Phosphate as Efficient Heterogeneous Compounds for Synthesis of Quinoxalines vol.22, pp.24, 2011, https://doi.org/10.3390/ijms222413665