DOI QR코드

DOI QR Code

Investigation of the Binding Affinity between Styrylquinoline Inhibitors and HIV Integrase Using Calculated Nuclear Quadrupole Coupling Constant (NQCC) Parameters (A Theoretical ab initio Study)

  • Rafiee, Marjan A. (Payame Noor University (PNU)) ;
  • Partoee, Tayyebe (Payame Noor University (PNU))
  • 투고 : 2010.06.07
  • 심사 : 2010.11.15
  • 발행 : 2011.01.20

초록

In this work, the calculated nuclear quadrupole coupling constants of $^{17}O$ in some styrylquinoline conformers were presented. The calculations were carried out to find the relationships between the charge distribution of styrylquinolines and their pharmaceutical behavior and to explore the differences among the electronic structures of some conformers of these potent HIV IN inhibitors. Furthermore, the HIV IN inhibitory of R1 and R2 rotamers was compared. On the basis of our results: - Charge density on oxygen atoms of carboxyl moiety has a dominant role in the drug activity. - The a conformer in which a divalent hydrogen atom is a link, has more capability in antiviral drug treatment. - The R1 conformer, as a $Mg^{+2}$ chelating agent, is better than R2 conformer and thus it is more inhibitor of HIV IN.

키워드

참고문헌

  1. Source:WHOFactsheetHIV.http://www.who.int/hiv/data/2008_global_ummary_AIDS_ep.png, accessed September 15th, 2008.
  2. Mushawar, I. K. Perspect. Med. Virol. 2007, 13, 75.
  3. Murphy, E.-M.;Jimenez, H. R.; Smith, S. M. Adv. Pharmacol. 2008, 56, 27. https://doi.org/10.1016/S1054-3589(07)56002-3
  4. De Clercq, E. J. Med. Chem. 1995, 38, 2491. https://doi.org/10.1021/jm00014a001
  5. Nair, V. Rev. Med. Virol. 2002, 12, 179. https://doi.org/10.1002/rmv.350
  6. Young, S. D. Ann. Rep. Med. Chem. 2003, 38, 173. https://doi.org/10.1016/S0065-7743(03)38019-4
  7. De Clercq, E. Exp. Opin. Emerging Drugs 2005, 10, 241. https://doi.org/10.1517/14728214.10.2.241
  8. Delelis, O.; Carayon, K.; Saib, A.; Deprez, E.; Mouscadet, J. F. Retrovirol. 2008, 5, 114. https://doi.org/10.1186/1742-4690-5-114
  9. Gerton, J. L.; Brown, P. O. J. Biol. Chem. 1997, 272, 25809. https://doi.org/10.1074/jbc.272.41.25809
  10. Laboulais, C.; Deprez, E.; Leh, H.; Mouscadet, J. F.; Brochon, J. C.; Le Bret, M. Biophys. J. 2001, 81, 473. https://doi.org/10.1016/S0006-3495(01)75715-3
  11. Esposito, D.; Craigie, R. EMBO J. 1998, 17, 5832. https://doi.org/10.1093/emboj/17.19.5832
  12. Agapkina, J.; Smolov, M.; Barbe, S.; Zubin, E.; Zatsepin, T.; Deprez, E.; Le Bret, M.; Mouscadet, J. F.; Gottikh, M. J. Biol. Chem. 2006, 281, 11530. https://doi.org/10.1074/jbc.M512271200
  13. Skinner, L. M.; Sudol, M.; Harper, A. L.; Katzman, M. J. Biol. Chem. 2001, 276, 114. https://doi.org/10.1074/jbc.M007032200
  14. Engelman, A.; Craigie, R. J. Virol. 1995, 69, 5908.
  15. Semenova, E. A.; Marchand, C.; Pommier, Y. Adv. Pharmacol. 2008, 56, 199. https://doi.org/10.1016/S1054-3589(07)56007-2
  16. Bonnenfant, S.; Thomas, C. M.; Vita, C.; Subra, F.; Deprez, E.; Zouhiri, F.; Desmaele, D.; d'Angelo, J.; Mouscadet, J. F.; Leh, H. J. Virol. 2004, 78, 5728. https://doi.org/10.1128/JVI.78.11.5728-5736.2004
  17. Deprez, E.; Barbe, S.; Kolaski, M.; Leh, H.; Zouhiri, F.; Auclair, C.; Brochon, J. C.; Le Bret, M.; Mouscadet, J. F. Mol. Pharmacol. 2004, 65, 85. https://doi.org/10.1124/mol.65.1.85
  18. Mekouar, K.; Mouscadet, J. F.; Desmaele, D.; Subra, F.; Savoure, D.; Auclair, D.; d’Angelo, J. J. Med. Chem. 1998, 41, 2846. https://doi.org/10.1021/jm980043e
  19. Mouscadet, J. F.; Desmaele, D. Molecules 2010, 15, 3048. https://doi.org/10.3390/molecules15053048
  20. Lucken, E. A. C. Nuclear Quadrupole Coupling Constant; Academic Press: London, 1969.
  21. Leach, A. R. Molecular Modeling Principles and Applications; Longman Singapore publishers: 1997.
  22. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E., Jr.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 1998.
  23. Kawakami, J.; Miyamoto, R.; Kimura, K.; Obata, K.; Nagaki, M.; Kitahara, H. J. Comput. Chem. Jpn. 2003, 2, 57. https://doi.org/10.2477/jccj.2.57
  24. Coussan, S.; Manca, C.; Tanner, C.; Bach, A.; Leutwyler, S. J. Chem. Phys. 2003, 119, 3774. https://doi.org/10.1063/1.1589482
  25. Slanina, Z.; Hsu, M. A.; Chow, T. J. J. Chin. Chem. Soc. 2003, 50, 593. https://doi.org/10.1002/jccs.200300086
  26. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  27. Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B, 1988, 37,785. https://doi.org/10.1103/PhysRevB.37.785
  28. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200. https://doi.org/10.1016/0009-2614(89)87234-3
  29. Graybeal, J. D. Molecular Spectroscopy; McGraw-Hill: New York, 1998.
  30. Cohen, M. H.; Reif, F. Solid State Phys. 1975, 5, 321.
  31. Hadipour, N. L.; Rafiee, M. A.; Javaheri, M.; Mousavi, M. K. Chem. Phys. Lett. 2002, 356, 445. https://doi.org/10.1016/S0009-2614(02)00339-1
  32. Rafiee, M. A.; Hadipour,N. L.; Naderi-manesh, H. J. Comput. Aided Mol. Des. 2004, 18, 215. https://doi.org/10.1023/B:JCAM.0000035201.67977.16
  33. Pyykko, P. Mol Phys. 2001, 99, 1617. https://doi.org/10.1080/00268970110069010
  34. Zouhiri, F.; Mouscadet, J. F.; Mekouar, K.; Desmaele, D.; Savoure, D.; Leh, H.; Subra, F.; Le Bret, M.; Auclair, C.; d'Angelo, J. J. Med. Chem. 2000, 43, 1533. https://doi.org/10.1021/jm990467o
  35. Branch, G. E. K.; Yabroff, D. L. J. Am. Chem. Soc. 1934, 56, 2568. https://doi.org/10.1021/ja01327a012
  36. Brown, P. O.; Bowerman, B.; Varmus, H. E.; Bishop, J. M. Cell. 1987, 49(3), 347. https://doi.org/10.1016/0092-8674(87)90287-X
  37. Ellison, V.; Abrams, H.; Roe, T.; Lifson, J.; Brown, P. J. Virol. 1990, 64(6), 2711.
  38. Lee, S. P.; Kin, H. G.; Censullo, M. L.; Han, M. K. Biochem. 1995, 34, 10205. https://doi.org/10.1021/bi00032a014
  39. Ma, X. H.; Zhang, X. Y.; Tan, J. J.; Chen, W. Z.; Wang, C. X. Acta Pharmacol. Sin. 2004, 25(7), 950.
  40. Waldek, D. H. Chem. Rev. 1991, 91, 415 https://doi.org/10.1021/cr00003a007
  41. Mazzucato, U.; Momicchioli, F. Chem. Rev. 1991, 91, 1679. https://doi.org/10.1021/cr00008a002
  42. Shim, S. C.; Kim, D. W.; Kim, M. S. J. Photochem. Photobiol. A 1991, 56, 227. https://doi.org/10.1016/1010-6030(91)80023-B
  43. Denisov, G. S.; Golubev, N. S.; Schreiber, V. M.; Shajakhmedov, Sh. S.; Shurukhina, A. V. J. mol. Struct. 1997, 437, 153. https://doi.org/10.1016/S0022-2860(97)00136-1
  44. Burdujan, R.; D'Angelo, J.; Desmaele, D.; Zouhiri, F.; Tauc, P.; Brochon, J.-C.; Auclair, C.; Mouscadet, J.-F.; Pernot, P.; Tfibel, F.; Enescu, M.; Fontaine-Aupart, M. P. Phys. Chem. Chem. Phys. 2001, 3, 3797. https://doi.org/10.1039/b102555b

피인용 문헌

  1. A theoretical study of MgH2 ambient and high-pressure phases using NQCC parameters vol.88, pp.13, 2014, https://doi.org/10.1134/S0036024414130172
  2. A theoretical study of high-pressure-induced phases of LiAlH4 using calculated NQCC parameters vol.90, pp.13, 2016, https://doi.org/10.1134/S0036024416130148