References
- P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, KluwerAcademic Publishers, Dordrecht, 2004.
- C. Benhida and E. Zerouali, Local spectral theory of linear operators RS and SR, IntegralEquations Operator Theory 54 (2006), no. 1, 1-8. https://doi.org/10.1007/s00020-005-1375-3
- E. Bishop, A duality theorem for an arbitrary operator, Pacific J. Math. 9 (1959), 379-397. https://doi.org/10.2140/pjm.1959.9.379
- I. Colojoara and C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach,Science Publishers, New York-London-Paris, 1968.
- J. B. Conway, A Course in Functional Analysis, Springer-Verlag, 1985.
- B. P. Duggal, Upper triangular operator matrices with the single-valued extension property, J. Math. Anal. Appl. 349 (2009), no. 1, 85-89. https://doi.org/10.1016/j.jmaa.2008.08.033
- B. P. Duggal and S. V. Djordjevic, Dunford's property (C) and Weyl's theorems, IntegralEquations Operator Theory 43 (2002), no. 3, 290-297. https://doi.org/10.1007/BF01255564
- J. Eschmeier, Invariant subspaces for subscalar operators, Arch. Math. (Basel) 52(1989), no. 6, 562-570. https://doi.org/10.1007/BF01237569
-
J. Eschmeier and M. Putinar, Bishop's condition
$({\beta})$ and rich extensions of linearoperators, Indiana Univ. Math. J. 37 (1988), no. 2, 325-348. https://doi.org/10.1512/iumj.1988.37.37016 - I. B. Jung, E. Ko, and C. Pearcy, Aluthge transforms of operators, Integral EquationsOperator Theory 37 (2000), no. 4, 437-448. https://doi.org/10.1007/BF01192831
- I. B. Jung, E. Ko, and C. Pearcy, Spectral pictures of Aluthge transforms of operators, Integral Equations Operator Theory 40 (2001), no. 1, 52-60. https://doi.org/10.1007/BF01202954
- Y. Kim, E. Ko, and J. Lee, Operators with the single valued extension property, Bull.Korean Math. Soc. 43 (2006), no. 3, 509-517. https://doi.org/10.4134/BKMS.2006.43.3.509
- K. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323-336. https://doi.org/10.2140/pjm.1992.152.323
- K. Laursen and M. Neumann, An Introduction to Local Spectral Theory, The ClarendonPress, Oxford University Press, New York, 2000.
- C. Lin, Z. Yan, and Y. Ruan, Common properties of operators RS and SR and p-hyponormal operators, Integral Equations Operator Theory 43 (2002), no. 3, 313-325. https://doi.org/10.1007/BF01255566