DOI QR코드

DOI QR Code

Gradation and Transport Characteristics of Bed Materials in Pool-Riffle Sequence in the Gap Stream, Korea

갑천의 웅덩이-여울 연속구조에서 하상토의 입도 및 이동 특성

  • Choi, Sung-Uk (Department of Civil and Environmental Engineering, Yonsei Univ.) ;
  • Bae, Hye-Deuk (Department of Civil and Environmental Engineering, Yonsei Univ.)
  • 최성욱 (연세대학교 토목환경공학과) ;
  • 배혜득 (연세대학교 대학원 토목환경공학과)
  • Received : 2010.12.22
  • Accepted : 2010.01.04
  • Published : 2011.01.31

Abstract

Natural streams meander, forming pools at the outer part of bend and riffles at the crossing. Pools are deep at a lower flow velocity, and riffles are shallow at a higher flow velocity. Attentions are being paid to pool-riffle sequences in meandering streams because pool-riffle sequences tend to increase biodiversity of the stream ecosystem. This study investigates the characteristics of distribution of bed sediment particles in the upstream reach of the Gap Stream, which is a tributary of the Geum River in Korea. The upstream part of the Gap Stream, the study reach, is a gravel-bed stream, showing a pool and three riffles due to meandering. The reach also includes pools at the upstream and downstream parts of the weir. The characteristics of bed sediment particles sampled at the wetland and in the side channel are studied, revealing that the median particle diameter in the riffle is about four times larger than that in the pool. In addition, flow simulations are carried out for ordinary discharge and design flood, and such parameters important to sediment transport as velocity, shear stress, dimensionless shear stress (or Shields number), and dimensionless shear velocity are provided to see the mobility of sediment particles in the pool-riffle sequence.

자연하천은 사행을 보이며 만곡부 외측에 웅덩이 그리고 만곡과 만곡을 연결하는 직선 유로에 여울이 형성된다. 웅덩이는 수심이 깊으며 유속이 느리고, 여울은 수심이 비교적 얕고 유속이 빠른 특징이 있다. 사행유로를 따라 자연적으로 발달하는 웅덩이-여울 연속구조에 근래들어 관심이 집중되는 이유는 이러한 하천형태학적 구조가 생물학적인 다양성을 증가시키기 때문이다. 본 연구에서는 금강의 지류인 갑천 상류구간을 대상으로 웅덩이-여울 연속구조에서 하상토의 입도특성을 조사하였다. 대상구간인 갑천 상류부는 자갈하천으로 사행에 의한 웅덩이 1개소와 여울 3개소를 포함하고 있으며, 구간 상류측에 보로 인해 상하류에 형성된 웅덩이 2개소가 위치한다. 아울러 조사대상 구간의 습지 및 샛강에서 채취한 하상토의 입도특성도 살펴보았는데, 여울에서의 중앙입경이 웅덩이에서보다 약 4배 큰 것으로 나타났다. 또한, 평수량 및 홍수량에 대하여 부등류 계산을 실시하여, 유사이동에 중요한 웅덩이와 여울에서 평균유속, 전단응력, 무차원 전단응력(Shields 수), 그리고 무차원 전단속도를 검토하였다.

Keywords

References

  1. 건설교통부(2002). 금강수계하천정비기본계획, 건설교통부 대전지방국토관리청.
  2. 성영두, 박봉진, 이삼희, 정관수(2006). “여울과 소 형성 조건에 따른 어류서식처 환경 영향.” 한국수자원학회학술발표회 논문집, 한국수자원학회, pp. 1007-1011.
  3. 유대영, 박정환, 우효섭(2003). “V형 여울에서 발생하는 세굴에 관한 실험 연구.” 한국수자원학회논문집, 한국수자원학회, 제36권, 제3호, pp. 507-520. https://doi.org/10.3741/JKWRA.2003.36.3.507
  4. 이배성, 황만하, 강신욱, 유승엽(2006). “댐하류 여울보 설치에 따른 수리학적 특성 변화 분석.” 대한토목학회정기학술대회 발표논문초록집.
  5. 한국건설기술연구원(2008). 하천 생물서식처 평가를 위한 갑천 특성조사.
  6. Biedenharn, D.S., Watson, C.C., and Thorne, C.R. (2007). Chapter 6. Fundamentals of fluvial geomorphology, Sedimentation Engineering (edited by M.H. Garcia), American Society of Civil Engineers, Reston, VI.
  7. Booker, D.J., Sear, D.A., and Payne, A.J. (2001). “Modeling three dimensional flow structures and patterns of boundary shear stress in a natural pool-rifflesequence.” Earth Surface Processes and Landforms, Vol. 26, 553-576. https://doi.org/10.1002/esp.210
  8. Dietrich, W.E. (1982). “Settling velocities of natural particles.” Water Resources Research, Vol. 18, No. 6, 1615-1626. https://doi.org/10.1029/WR018i006p01615
  9. Fischer, J.R., Quist, M.C., Wigen, S.L., Schaefer, A.J., Stewart, T.W., and Isenhart, T.M. (2010). “Assemblage and population-level responses of stream fish to riparian buffers at multiple spatial scales.” Transactions of the American Fisheries Society, Vol. 139, No. 1, pp. 185-200. https://doi.org/10.1577/T09-050.1
  10. Garcia, M.H. (2007). Chapter 2. Sediment transport and morphodynamics, Sedimentation Engineering (edited by M.H. Garcia), American Society of Civil Engineers, Reston, VI.
  11. Hauer, C., Mandlburger, G., and Habersack, H. (2009). “Hydraulically related hydro-morphological units:Description based on a new conceptual mesohabitatevaluation model (MEM) using LIDAR data as geometric input.” River Research and Applications, Vol. 25, No. 1, pp. 29-47. https://doi.org/10.1002/rra.1083
  12. Hey, R.D., and Thorne, C.R. (1986). “Stable channels with stable mobile beds.” Journal of Hydraulic Engineering, ASCE, Vol. 112, No. 8, pp. 671-689. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:8(671)
  13. Hose, G.C., Jones, P., and Lim, R.P. (2005). “Hyporheic macroinvertebrates in riffle and pool areas of temporary streams in south eastern Australia.” Hydrobiologia, Vol. 532, pp. 81-90. https://doi.org/10.1007/s10750-004-9016-4
  14. Johnson, J.A., and Arunachalam, M. (2010). “Relations of physical habitat to fish assemblages in streams of Western Ghats, India.” Applied Ecology and Environmental Research, Vol. 8, No. 1, pp. 1-10. https://doi.org/10.15666/aeer/0801_001010
  15. Keller, E.A. (1971). “Areal sorting of bed-load material:The hypothesis of velocity reversal.” Geological Society of America Bulletin, Vol. 82, pp. 753-756. https://doi.org/10.1130/0016-7606(1971)82[753:ASOBMT]2.0.CO;2
  16. Leopold, L.B., Wolman, M.G., and Miller, J.P. (1964). Fluvial Processes in Geomorphology, W.H. Freeman, CA.
  17. Peterson, J.T., Jackson, C.R., Shea, C.P., and Li, G. (2009). “Development and evaluation of a stream channel classification for estimating fish responses tochanging streamflow.” Transactions of the American Fisheries Society, Vol. 138, No. 5, pp. 1123-1137. https://doi.org/10.1577/T08-146.1
  18. Robert, A. (1997). “Characteristics of velocity profiles along riffle-pool sequences and estimates of bed shear stress.” Geomorphology, Vol. 19, pp. 89-98. https://doi.org/10.1016/S0169-555X(96)00049-9
  19. Sear, D.A. (1996). “Sediment transport processes in pool-riffle sequences.” Earth Surface Processes and Landforms, Vol. 21, pp. 241-262. https://doi.org/10.1002/(SICI)1096-9837(199603)21:3<241::AID-ESP623>3.0.CO;2-1
  20. Tayler, C.M. (2000). “A Large-scale Comparative Analysis of Riffle and Pool Fish Communities in an Upland Stream System.” Environmental Biology of Fishes, Vol. 58, No. 1, pp. 89-95. https://doi.org/10.1023/A:1007677718275
  21. US Army Crops of Engineers (2006). HEC-RAS River Analysis System User's Manual.

Cited by

  1. Classification of Riparian Riffles and Their Physical and Hydraulic Characteristics vol.48, pp.2, 2015, https://doi.org/10.3741/JKWRA.2015.48.2.137