참고문헌
- Baek, K.-H., B.-D. Yoon, B.-H. Kim, D.-H. Cho, I.-S. Lee, H.-M. Oh, and H.-S. Kim. 2007. Monitoring of microbial diversity and activity during bioremediation of crude oil-contaminated soil with different treatments. J. Microbiol. Biotechnol. 17: 67-73.
- Bastida, F., A. Zsolnay, T. Hernández, and C. Carcía. 2008. Review: Past, present and future of soil quality indices: A biological perspective. Geoderma. 147: 159-171. https://doi.org/10.1016/j.geoderma.2008.08.007
- Beck, A. J. and K. C. Jones. 1995. Limitations to the in situ remediation of soils contaminated with organic chemicals in relation to the potential to achieve clean-up criteria. In: Van den Brink, W. J., Bosman, R., Arendt, F. (eds) Contaminated soil '95. Kluwer, Dordrecht, The Netherland, pp. 327-336.
- Bento, F. M., A. O. Camargo, B. C. Okeke, and W. T. Frankenberger. 2005. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation, and bioaugmentation. Bioresour. Technol. 96: 1049-1055. https://doi.org/10.1016/j.biortech.2004.09.008
- Christofi, N. and I. B. Ivshina. 2002. A reviwe: Microbial surfactants and their use in field studies of soil remediation. J. Appl. Microbiol. 93: 915-929. https://doi.org/10.1046/j.1365-2672.2002.01774.x
- Chu, H., X. Lin, T. Fujii, S. Morimoto, K. Yagi, J. Hu, and J. Zhang. 2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol. Biochem. 39: 2971-2976. https://doi.org/10.1016/j.soilbio.2007.05.031
- Devinny, J. and S. H. Chang. 2000. Bioaugmentation for soil bioremediation, In: Wise, D. L., Trantolo, D. J. (eds) Bioremediation of contaminated soils, Marcel Dekker, New York, pp. 465-488.
- Gallego, J. L. R., J. Lpredo, J. F. Llamas, F. Vazquez, and J. Sanchez. 2001. Bioremediation of diesel-contaminated soils: Evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation 12: 325-335. https://doi.org/10.1023/A:1014397732435
- Huang, H., S. Zhang, N. Wu, L. Luo, and P. Christie. 2009. Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure. Soil Biol. Biochem. 41: 726-734. https://doi.org/10.1016/j.soilbio.2009.01.009
- Lai, C.-C., Y.-C. Huang, Y.-H. Wei, and J.-C. Chang. 2009. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J. Hazard. Mater. 167: 609- 614. https://doi.org/10.1016/j.jhazmat.2009.01.017
- Lee, E.-H., J. Kim, K. S. Cho, Y. G. Ahn, and G. S. Hwang. 2010. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831. Environ. Sci. Pollut. Res. 17: 64-77. https://doi.org/10.1007/s11356-009-0238-x
- Lee, E.-H., S. H. Lee, and K. S. Cho. 2011. Bacterial diversity dynamics in a long-term petroleum-contaminated soil. J. Environ. Sci. Health Part A. 46: 281-290.
- Lee, E.-H., H. W. Ryu, and K. S. Cho. 2009. Removal of benzene and toluene in polyurethane biofilter immobilized with Rhodococcus sp. EH831 under transient loading. Bioresour. Technol. 100: 5656-5663. https://doi.org/10.1016/j.biortech.2009.06.036
- Lee, M., M. K. Kim, I. Singleton, M. Goodfellow, and S. T. Lee. 2006. Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid. J. Appl. Microbiol. 100: 325-333. https://doi.org/10.1111/j.1365-2672.2005.02756.x
- Li, H., Y. Zhang, I. Kravchenko, H. Xu, and C. G. Zhang. 2007. Dynamic changes in microbial activity and community structure during biodegradation of petroleum compounds: A laboratory experiment. J. Environ. Sci. 19: 1003- 1013. https://doi.org/10.1016/S1001-0742(07)60163-6
- Li, H., Y. Zhang, C. G. Zhang, and G. X. Chen. 2005. Effect of petroleum-containing wastewater irrigation on bacterial diversities and enzymatic activities in a paddy soil irrigation area. J. Environ. Qual. 34: 1073-1080. https://doi.org/10.2134/jeq2004.0438
- Lu, M., Z. Zhang, S. Sun, Q. Wang, and W. Zhong. 2009. Enhanced degradation of bioremediation residues in petroleum- contaminated soil using a two-liquid-phase bioslurry reactor. Chemosphere 77: 161-168. https://doi.org/10.1016/j.chemosphere.2009.08.001
- Luthy, R. G., D. A. Dzombak, C. A. Peters, S. B. Roy, A. Ramaswami, D. V. Nakles, and B. R. Nott. 1994. Remediating tar-contaminated soils at manufactured gas plant sites. Environ. Sci. Technol. 28: A266-A276. https://doi.org/10.1021/es00055a002
- Mamilov, A. S. and O. M. Dilly. 2007. Microbial characteristics during the initial stages of litter decomposition in forest and adjacent cropland soil. Ecol. Eng. 31: 147-153. https://doi.org/10.1016/j.ecoleng.2007.03.005
- Margesin, R., M. Hämmerle, and D. Tscherko. 2007. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: Effects of hydrocarbon contamination, fertilizers, and incubation time. Microb. Ecol. 53: 259-269. https://doi.org/10.1007/s00248-006-9136-7
- Margesin, R., D. Labbe, F. Schinner, C. W. Greer, and L. G. Whyte. 2003. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl. Environ. Microbiol. 69: 3085-3092. https://doi.org/10.1128/AEM.69.6.3085-3092.2003
- Margesin, R. and F. Schinner. 1997. Laboratory bioremediation experiments with soil from a diesel-oil contaminated site-significant role of cold-adapted microorganisms and fertilizers. J. Chem. Tech. Biotechnol. 70: 92-98. https://doi.org/10.1002/(SICI)1097-4660(199709)70:1<92::AID-JCTB683>3.0.CO;2-M
- Mulligan, C. N., R. N. Yong, and B. F. Gibbs. 2001. Surfactant- enhanced remediation of contaminated soil: a review. Eng. Geol. 60: 371-380. https://doi.org/10.1016/S0013-7952(00)00117-4
- Paria, S. 2008. Surfactant-enhanced remediation of organic contaminated soil and water. Adv. Colloid Interface Sci. 138: 24-58. https://doi.org/10.1016/j.cis.2007.11.001
- Prak, D. J. L. and P. H. Pritchard. 2002. Degradation of polycyclic aromatic hydrocarbons dissolved in Tween 80 surfactant solutions by Sphingomonas paucimobilis EPA 50. Can. J. Microbiol. 48: 151-158. https://doi.org/10.1139/w02-004
- Sarkar, D., M. Ferguson, R. Datta, and S. Birnbaum. 2005. Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ. Pollut. 136: 187-195. https://doi.org/10.1016/j.envpol.2004.09.025
- Stres, B., T. Danev i , L. Pal, M. M. Fuka, L. Resman, S. Leskovec, J. Hacin, D. Stopar, I. Mahne, and I. Mandic- Mulec. 2008. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol. Ecol. 66: 110-122. https://doi.org/10.1111/j.1574-6941.2008.00555.x
- Tabatabai, M. A. 1982. Soil enzymes. In: Page, A. L., Miller, R. H., Keeney, R. (eds), Methods of Soil Analysis, Part 2 - Chemical and Microbiological Properties, pp. 903-947.
- Tongarun, R., E. Luepromchai, and A. S. Vangnai. 2007. Natural attenuation, biostimulation, and bioaugmentation in 4-Chloroaniline-contaminated soil. Curr. Microbiol. 56: 182- 188.
- Toress, L. G., N. Rojas, G. Bautista, and R. Iturbe. 2005. Effect of temperature, and surfactant's HLB and dose over the TPH-diesel biodegradation process in aged soil. Process Biochem. 40: 3296-3302. https://doi.org/10.1016/j.procbio.2005.03.032
- Ueno, A., Y. Ito, Y. Yamamoto, I. Yumoto, and H. Okuyama. 2006. Bacterial community changes in diesel-oil-contaminated soil microcosms biostimulated with Luria-Bertani medium or bioaugmented with a petroleum-degrading bacterium Pseudomonas aeruginosa strain WatG. J. Basic Microbiol. 46: 310-317. https://doi.org/10.1002/jobm.200510116
- Vázquez, S., B. Nogales, L. Ruberto, E. Hernández, J. Christie -Oleza, A. Lo Balbo, R. Bosch, J. Lalucat, and W. Mac Cormack. 2009. Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil. Microb. Ecol. 57: 598-610. https://doi.org/10.1007/s00248-008-9420-9
- Volkering, F., A. M. Breure, and W. H. Rulkens. 1998. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8: 401-417.
- Wurdemann, H., N. C. Lund, and G. Gudehus. 1995. Assessment of a biological in situ remediation. In: Hinchee, R. E., Miller, R.N., Johnson, P. C. (eds) In situ aeration: air sparging, bioventing, and related remediation processes. Battelle Press, Columbus, USA, pp. 237-247.