DOI QR코드

DOI QR Code

Rapid Multiplex PCR Assay for the Simultaneous Detection of the Brucella Genus, B. abortus, B. melitensis, and B. suis

  • Kumar, Sanjay (Division of Biotechnology, Defence Research and Development Establishment) ;
  • Tuteja, Urmil (Division of Microbiology, Defence Research and Development Establishment) ;
  • Sarika, Kumari (Division of Microbiology, Defence Research and Development Establishment) ;
  • Singh, Dhirendra Kumar (Division of Veterinary Public Health, Indian Veterinary Research Institute) ;
  • Kumar, Ashok (Division of Veterinary Public Health, Indian Veterinary Research Institute) ;
  • Kumar, Om (Division of Biotechnology, Defence Research and Development Establishment)
  • Received : 2010.07.27
  • Accepted : 2010.09.29
  • Published : 2011.01.28

Abstract

The routine identification and differentiation of Brucella species is a time-consuming and labor-intensive process, which frequently places personnel at risk of laboratory-acquired infection. Here, we describe the development of a rapid multiplex PCR assay for the confirmation of presumptive Brucella isolates. The assay was able to identify and differentiate major human pathogens, namely B. abortus, B. melitensis, and B. suis, in a single test of less than an hour and a half.

Keywords

References

  1. Alton, G. G., L. M. Jones, R. D. Angus, and J. M. Verger. 1988. Techniques for Brucellosis Laboratory. INRA, Paris, France.
  2. Baily, G. G., J. B. Krahn, B. S. Drasar, and N. G. Stoker. 1992. Detection of Brucella melitensis and Brucella abortus by DNA amplification. J. Trop. Med. Hyg. 95: 271-275.
  3. Bogdanovich, T., M. Skurnik, P. S. Lubeck, P. Ahrens, and J. Hoorfar. 2004. Validated 5' nuclease PCR assay for rapid identification of the genus Brucella. J. Clin. Microbiol. 42: 2261-2263. https://doi.org/10.1128/JCM.42.5.2261-2263.2004
  4. Bricker, B. J. 2002. PCR as a diagnostic tool for brucellosis. Vet. Microbiol. 90: 435-446. https://doi.org/10.1016/S0378-1135(02)00228-6
  5. Bricker, B. J. and S. M. Halling. 1994. Differentiation of Brucella abortus bv. 1, 2 & 4, Brucella melitensis, Brucella ovis and Brucella suis bv. 1 by PCR. J. Clin. Microbiol. 32: 2660-2666.
  6. Corbel, M. J. 1997. Brucellosis: An overview. Emerg. Infect. Dis. 3: 213-221. https://doi.org/10.3201/eid0302.970219
  7. Foster, J. T., R. T. Okinaka, R. Svensson, K. Shaw, B. K. De, R. A. Robison, et al. 2008. Real-time PCR assays of singlenucleotide polymorphisms defining the major Brucella clades. J. Clin. Microbiol. 46: 296-301. https://doi.org/10.1128/JCM.01496-07
  8. Gandara, B., A. L. Merino, M. A. Rogel, and E. Martinez-Romero. 2001. Limited genetic diversity of Brucella spp. J. Clin. Microbiol. 39: 235-240. https://doi.org/10.1128/JCM.39.1.235-240.2001
  9. Garcia-Yoldi, D., C. M. Marin, M. J. de Miguel, P. M. Munoz, J. L. Vizmanos, and I. Lopez-Goni. 2006. Multiplex PCR assay for the identification and differentiation of all Brucella species and the vaccine strains Brucella abortus S19 and RB51 and Brucella melitensis Rev1. Clin. Chem. 52: 779-781. https://doi.org/10.1373/clinchem.2005.062596
  10. Halling, S. M., B. D. Peterson-Burch, B. J. Bricker, R. L. Zuerner, Z. Qing, L. L. Li, V. Kapur, D. P. Alt, and S. C. Olsen. 2005. Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J. Bacteriol. 187: 2715-2726. https://doi.org/10.1128/JB.187.8.2715-2726.2005
  11. Herman, L. and R. H. De. 1992. Identification of Brucella spp. by using the polymerase chain reaction. Appl. Environ. Microbiol. 58: 2099-2101.
  12. Hinic, V., I. Brodard, A. Thomann, Z. Cvetnic, P. V. Makaya, J. Frey, and C. Abril. 2008. Novel identification and differentiation of Brucella melitensis, B. abortus, B. suis, B. ovis, B. canis, and B. neotomae suitable for both conventional and real-time PCR systems. J. Microbiol. Meth. 75: 375-378. https://doi.org/10.1016/j.mimet.2008.07.002
  13. Hoorfar, J., N. Cook, B. Malorny, M. Wagner, D. De Medici, A. Abdul-Mawjood, and P. Fach. 2003. Making internal amplification control mandatory for diagnostic PCR. J. Clin. Microbiol. 41: 5835. https://doi.org/10.1128/JCM.41.12.5835.2003
  14. Kumar, S. and U. Tuteja. 2009. Detection of virulenceassociated genes in clinical isolates of Bacillus anthracis by multiplex PCR and DNA probes. J. Microbiol. Biotechnol. 19: 1475-1481.
  15. Kumar, S., K. Balakrishna, and H. V. Batra. 2006. Detection of Salmonella enterica serovar Typhi (S. typhi) by selective amplification of invA, viaB, fliC-d and prt genes by polymerase chain reaction in mutiplex format. Lett. Appl. Microbiol. 49: 149-154.
  16. Leal-Klevezas, D. S., I. O. Martinez-Vazquez, A. Lopez-Merino, and J. P. Martinez-Soriano. 1995. Single-step PCR for detection of Brucella spp. from blood and milk of infected animals. J. Clin. Microbiol. 33: 3087-3090.
  17. Navarro, E., M. A. Casao, and J. Solera. 2004. Diagnosis of human brucellosis using PCR. Expert Rev. Mol. Diagn. 4: 115-123. https://doi.org/10.1586/14737159.4.1.115
  18. Newby, D.T., T. L. Hadfield, and F. F. Roberto. 2003. Real-time PCR detection of Brucella abortus: A comparative study of SYBR green I, 5'-exonuclease, and hybridization probe assays. Appl. Environ. Microbiol. 69: 4753-4759. https://doi.org/10.1128/AEM.69.8.4753-4759.2003
  19. Paulsen, I. T., R. Seshadri, K. E. Nelson, J. A. Eisen, J. F. Heidelberg, T. D. Read, et al. 2002. The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc. Natl. Acad. Sci. USA 99: 13148-13153. https://doi.org/10.1073/pnas.192319099
  20. Probert, W. S., K. N. Schrader, N. Y. Khuong, S. L. Bystrom, and M. H. Graves. 2004. Real-time multiplex PCR assay for detection of Brucella spp., B. abortus, and B. melitensis. J. Clin. Microbiol. 42: 1290-1293. https://doi.org/10.1128/JCM.42.3.1290-1293.2004
  21. Rajashekara, G., J. D. Glasner, D. A. Glover, and G. A. Splitter. 2004. Comparative whole genome hybridization reveals genomic islands in Brucella species. J. Bacteriol. 186: 5040-5051. https://doi.org/10.1128/JB.186.15.5040-5051.2004
  22. Redkar, R., S. Rose, B. Bricker, and V. Del Vecchio. 2001. Real-time detection of Brucella abortus, Brucella melitensis and Brucella suis. Mol. Cell. Probes 15: 43-52. https://doi.org/10.1006/mcpr.2000.0338
  23. Rijpens, N. P., G. Jannes, M. Van Asbroeck, R. Rossau, and L. M. Herman. 1996. Direct detection of Brucella spp. in raw milk by PCR and reverse hybridization with 16S-23S rRNA spacer probes. Appl. Environ. Microbiol. 62: 1683-1688.
  24. Scott, J. C., M. S. Koylass, M. R. Stubberfield, and A. M. Whatmore. 2007. Multiplex assay based on single-nucleotide polymorphisms for rapid identification of Brucella isolates at the species level. Appl. Environ. Microbiol. 73: 7331-7337. https://doi.org/10.1128/AEM.00976-07
  25. Singh, M., D. K. Singh, K. V. Shivaramu, R. Biswas, S. Rawat, R. Boral, S. Singh, and P. S. Cheema. 2010. Serum as clinical specimen in PCR for diagnosis of ovine brucellosis. Ind. J. Anim. Sci. 80: 17-18.
  26. Sohn, A. H., W. S. Probert, C. A. Glaser, N. Gupta, A. W. Bollen, J. D. Wong, E. M. Grace, and W. C. McDonald. 2003. Human neurobrucellosis with intracerebral granuloma caused by a marine mammal Brucella spp. Emerg. Infect. Dis. 9: 485-488. https://doi.org/10.3201/eid0904.020576
  27. Tcherneva, E., N. Rijpens, B. Jersek, and L. M. Herman. 2000. Differentiation of Brucella species by random amplified polymorphic DNA analysis. J. Appl. Microbiol. 88: 69-80.
  28. Theron, J., D. Morar, M. Du Preez, V. S. Brozel, and S. N. Venter. 2001. A sensitive seminested PCR method for the detection of Shigella in spiked environmental water samples. Water Res. 35: 869-874. https://doi.org/10.1016/S0043-1354(00)00348-1

Cited by

  1. Simultaneous detection and differentiates of Brucella abortus and Brucella melitensis by combinatorial PCR vol.5, pp.1, 2012, https://doi.org/10.1016/s1995-7645(11)60239-3
  2. Presencia de Brucella sp. en cabras de la ciudad de Quito, provincia de Pichincha, Ecuador vol.4, pp.2, 2011, https://doi.org/10.18272/aci.v4i2.100
  3. Development and Evaluation of PCR Assay Based on Outer Membrane Protein 22 Gene for Genus Specific Diagnosis of Brucella spp vol.83, pp.4, 2011, https://doi.org/10.1007/s40011-013-0174-x
  4. Brucellosis in low-income and middle-income countries vol.26, pp.5, 2013, https://doi.org/10.1097/qco.0b013e3283638104
  5. Detection of brucellosis and leptospirosis in feral pigs in New South Wales vol.92, pp.9, 2014, https://doi.org/10.1111/avj.12203
  6. Polymerase chain reaction–based assays for the diagnosis of human brucellosis vol.13, pp.1, 2011, https://doi.org/10.1186/s12941-014-0031-7
  7. Brucellosis in Dairy Cattle and Goats in Northern Ecuador vol.90, pp.4, 2011, https://doi.org/10.4269/ajtmh.13-0362
  8. Evaluation of Different Primers for Detection of Brucella by Using PCR Method vol.8, pp.11, 2011, https://doi.org/10.19082/3222
  9. PUP MORTALITY AND EVIDENCE FOR PATHOGEN EXPOSURE IN GALAPAGOS SEA LIONS (ZALOPHUS WOLLEBAEKI) ON SAN CRISTOBAL ISLAND, GALAPAGOS, ECUADOR vol.53, pp.3, 2011, https://doi.org/10.7589/2016-05-092
  10. Detection of Brucella spp. in milk from seronegative cows by real-time polymerase chain reaction in the region of Batna, Algeria vol.11, pp.3, 2018, https://doi.org/10.14202/vetworld.2018.363-367
  11. Human brucellosis: Experience from a tertiary care hospital in southern India vol.48, pp.4, 2011, https://doi.org/10.1177/0049475518788467
  12. Laboratory Diagnosis of Human Brucellosis vol.33, pp.1, 2019, https://doi.org/10.1128/cmr.00073-19
  13. Brucella melitensis , a latent “travel bacterium,” continual spread and expansion from Northern to Southern China and its relationship to worldwide lineages vol.9, pp.1, 2011, https://doi.org/10.1080/22221751.2020.1788995
  14. Epidemiological, molecular characterization and risk factors of human brucellosis in Iran vol.13, pp.4, 2011, https://doi.org/10.4103/1995-7645.280224
  15. Multiplex PCR Assay for the Simultaneous Detection of the Brucella Genus in Human Whole Blood and Serum vol.14, pp.1, 2011, https://doi.org/10.2174/1874434602014010242
  16. Immunological pathways of macrophage response to Brucella ovis infection vol.26, pp.7, 2011, https://doi.org/10.1177/1753425920958179
  17. Design of a new multi-epitope vaccine against Brucella based on T and B cell epitopes using bioinformatics methods vol.149, pp.None, 2011, https://doi.org/10.1017/s0950268821001229