DOI QR코드

DOI QR Code

Cooperativity of ${\alpha}$- and ${\beta}$-Subunits of Group II Chaperonin from the Hyperthermophilic Archaeum Aeropyrum pernix K1

  • Kim, Jeong-Hwan (Department of Biomaterial Control, Dong-Eui University) ;
  • Lee, Jin-Woo (Department of Biomaterial Control, Dong-Eui University) ;
  • Shin, Eun-Jung (Department of Biomaterial Control, Dong-Eui University) ;
  • Nam, Soo-Wan (Department of Biomaterial Control, Dong-Eui University)
  • Received : 2010.10.05
  • Accepted : 2010.11.17
  • Published : 2011.02.28

Abstract

${\alpha}$ and ${\beta}$-subunits (ApCpnA and ApCpnB) are group II chaperonins from the hyperthermophilic archaeum Aeropyrum pernix K1, specialized in preventing the aggregation and inactivation of substrate proteins under conditions of transient heat stress. In the present study, the cooperativity of ${\alpha}$- and ${\beta}$-subunits from the A. pernix K1 was investigated. The ApCpnA and ApCpnB chaperonin genes were overexpressed in E. coli Rosetta and Codonplus (DE3), respectively. Each of the recombinant ${\alpha}$- and ${\beta}$-subunits was purified to 92% and 94% by using anionexchange chromatography. The cooperative activity between purified ${\alpha}$- and ${\beta}$-subunits was examined using citrate synthase (CS), alcohol dehydrogenase (ADH), and malate dehydrogenase (MDH) as substrate proteins. The addition of both ${\alpha}$- and ${\beta}$-subunits could effectively protect CS and ADH from thermal aggregation and inactivation at $43^{\circ}C$ and $50^{\circ}C$, respectively, and MDH from thermal inactivation at $80^{\circ}C$C and $85^{\circ}C$. Moreover, in the presence of ATP, the protective effects of ${\alpha}$- and ${\beta}$-subunits on CS from thermal aggregation and inactivation, and ADH from thermal aggregation, were more enhanced, whereas cooperation between chaperonins and ATP in protection activity on ADH and MDH (at $85^{\circ}C$) from thermal inactivation was not observed. Specifically, the presence of both ${\alpha}$- and ${\beta}$- subunits could effectively protect MDH from thermal inactivation at $80^{\circ}C$ in an ATP-dependent manner.

Keywords

References

  1. Archibald, J. M., J. M. Logsdon, and F. W. Doolittle. 1999. Recurrent paralogy in the evolution of archaeal chaperonins. Curr. Biol. 9: 1053-1056. https://doi.org/10.1016/S0960-9822(99)80457-6
  2. Bigotti, M. G. and A. R. Clarke. 2005. Cooperativity in the thermosome. J. Mol. Biol. 348: 13-26. https://doi.org/10.1016/j.jmb.2005.01.066
  3. Bigotti, M. G. and A. R. Clarke. 2008. Chaperonins: The hunt for the group II mechanism. Arch. Biochem. Biophys. 474: 331-339. https://doi.org/10.1016/j.abb.2008.03.015
  4. Braig, K., Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich, and P. B. Sigler. 1994. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371: 578-586. https://doi.org/10.1038/371578a0
  5. Bukau, B. and A. L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92: 351-366. https://doi.org/10.1016/S0092-8674(00)80928-9
  6. Bukau, B., E. Deuerling, C. Pfund, and E. A. Craig. 2000. Getting newly synthesized proteins into shape. Cell 101: 119-122. https://doi.org/10.1016/S0092-8674(00)80806-5
  7. Ditzel, L., J. Lowe, D. Stock, K. O. Stetter, H. Huber, R. Huber, and S. Steinbacher. 1998. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93: 125-138. https://doi.org/10.1016/S0092-8674(00)81152-6
  8. Ellis, R. J. 1996. The Chaperonins. Academic Press, San Diego, USA.
  9. Ellis, R. J. and F. U. Hartl. 1996. Protein folding in the cell: competing models of chaperonin function. FASEB J. 10: 20-26. https://doi.org/10.1096/fasebj.10.1.8566542
  10. Fenton, W. A. and A. L. Horwich. 1997. GroEL-mediated protein folding. Protein Sci. 6: 743-760.
  11. Geissler, S., K. Siegers, and E. Schiebel. 1998. A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J. 17: 952-966. https://doi.org/10.1093/emboj/17.4.952
  12. Gething, M. J. and J. Sambrook. 1992. Protein folding in the cell. Nature 355: 33-45. https://doi.org/10.1038/355033a0
  13. Gutsche, I., L. O. Essen, and W. Baumeister. 1999. Group II chaperonins: New TRiC(k)s and turns of a protein folding machine. J. Mol. Biol. 293: 295-312. https://doi.org/10.1006/jmbi.1999.3008
  14. Hansen, W. J., N. J. Cowan, and W. J. Welch. 1999. Prefoldinnascent chain complexes in the folding of cytoskeletal proteins. J. Cell Biol. 145: 265-277. https://doi.org/10.1083/jcb.145.2.265
  15. Hartl, F. U. 1996. Molecular chaperones in cellular protein folding. Nature 381: 571-579. https://doi.org/10.1038/381571a0
  16. Hartl, F. U. and M. Hayer-Hartl. 2002. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 295: 1852-1858. https://doi.org/10.1126/science.1068408
  17. Horovitz, A. and K. R. Willison. 2005. Allosteric regulation of chaperonins. Curr. Opin. Struct. Biol. 15: 646-651. https://doi.org/10.1016/j.sbi.2005.10.001
  18. Jeon, S. J. and K. Ishikawa. 2005. Characterization of the family I inorganic pyrophosphatase from Pyrococcus horikoshii OT3. Archaea 1: 385-389. https://doi.org/10.1155/2005/591628
  19. Kawarabayasi, Y., Y. Hino, H. Horikawa, S. Yamazaki, Y. Haikawa, K. Jin-no, et al. 1999. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 6: 83-101, 145-152. https://doi.org/10.1093/dnares/6.2.83
  20. Kim, J. H., E. J. Shin, S. J. Jeon, Y. H. Kim, P. Kim, C. H. Lee, and S. W. Nam. 2009. Overexpression, purification, and functional characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. Biotechnol. Bioprocess Eng. 14: 551-558. https://doi.org/10.1007/s12257-009-0008-0
  21. Kim, S., K. R. Willison, and A. L. Horwich. 1994. Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem. Sci. 19: 543-548. https://doi.org/10.1016/0968-0004(94)90058-2
  22. Kim, S. Y., N. Ayyadurai, M. A. Heo, S. H. Park, Y. J. Jeong, and S. G. Lee. 2009. Improving the productivity of recombinant protein in Escherichia coli under thermal stress by coexpressing GroELS chaperone system. J. Microbiol. Biotechnol. 19: 72-77.
  23. Kubota, H., G. Hynes, and K. Willison. 1995. The chaperonin containing t-complex polypeptide 1 (TCP-1). Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur. J. Biochem. 230: 3-16. https://doi.org/10.1111/j.1432-1033.1995.tb20527.x
  24. Laksanalamai, P., T. A. Whitehead, and F. T. Robb. 2004. Minimal protein-folding systems in hyperthermophilic archaea. Nat. Rev. Microbiol. 2: 315-324. https://doi.org/10.1038/nrmicro866
  25. Martin-Benito, J., J. Boskovic, P. Gomez-Puertas, J. L. Carrascosa, C. T. Simons, S. A. Lewis, F. Bartolini, N. J. Cowan, and J. M. Valpuesta. 2002. Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J. 21: 6377-6386. https://doi.org/10.1093/emboj/cdf640
  26. Mogk, A., B. Bukau, and E. Deuerling. 2001. Cellular functions of cytosolic E. coli chaperones, pp. 1-34. In P. Lund (ed.). Molecular Chaperones in the Cell. Oxford University Press, Oxford.
  27. Phipps, B. M., D. Typke, R. Heger, S. Volker, A. Hoffmann, K. O. Stetter, and W. Baumeister. 1993. Structure of a molecular chaperone from a thermophilic archaebacterium. Nature 361: 475-477. https://doi.org/10.1038/361475a0
  28. Ranson, N. A., H. E. White, and H. R. Saibil. 1998. Chaperonins. Biochem. J. 333: 233-242. https://doi.org/10.1042/bj3330233
  29. Shin, E. J., J. H. Kim, S. J. Jeon, Y. H. Kim, and S. W. Nam. 2009. Prevention of in vitro thermal aggregation and inactivation of foreign proteins by the hyperthermophilic group II chaperonin $\alpha$-subunit from Aeropyrum pernix K1. Biotechnol. Bioprocess Eng. 14: 702-707. https://doi.org/10.1007/s12257-009-0093-0
  30. Shin, E. J., J. H. Kim, S. J. Jeon, Y. T. Kim, Y. H. Kim, and S. W. Nam. 2010. Overexpression, purification, and characterization of $\beta$-subunit of group II chaperonin from hyperthermophilic Aeropyrum pernix K1. Prot. Expr. Purif. 20: 542-549.
  31. Sigler, P. B., Z. Xu, H. S. Rye, S. G. Burston, W. A. Fenton, and A. L. Horwich. 1998. Structure and function in GroELmediated protein folding. Annu. Rev. Biochem. 67: 581-608. https://doi.org/10.1146/annurev.biochem.67.1.581
  32. Vainberg, I. E., S. A. Lewis, H. Rommelaere, C. Ampe, J. Vandekerckhove, H. L. Klein, and N. J. Cowan. 1998. Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93: 863-873. https://doi.org/10.1016/S0092-8674(00)81446-4
  33. Valpuesta, J. M., J. Martin-Benito, P. Gomez-Puertas, J. L. Carrascosa, and K. R. Willison. 2002. Structure and function of a protein folding machine: The eukaryotic cytosolic chaperonin CCT. FEBS Lett. 529: 11-16. https://doi.org/10.1016/S0014-5793(02)03180-0
  34. Yoon, H. J., J. Y. Hong, and S. R. Ryu. 2008. Effects of chaperones on mRNA stability and gene expression in Escherichia coli. J. Microbiol. Biotechnol. 18: 228-233.
  35. Yoshida, T., R. Kawaguchi, H. Taguchi, M. Yoshida, T. Yasunaga, T. Wakabayashi, M. Yohda, and T. Maruyama. 2002. Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin. J. Mol. Biol. 315: 73-85. https://doi.org/10.1006/jmbi.2001.5220

Cited by

  1. Coexpression of Alginate Lyase with Hyperthermophilic Archaea Chaperonin in E. coli vol.25, pp.2, 2015, https://doi.org/10.5352/jls.2015.25.2.130
  2. Heat shock response in archaea vol.2, pp.4, 2011, https://doi.org/10.1042/etls20180024