References
- Allesen-Holm, M., K. Bundvig Barken, L. Yang, M. Klausen, J. Webb, S. Kjelleberg, S. Molin, M. Givskov, and T. Tolker- Nielsen. 2006. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol. 59: 1114-1128. https://doi.org/10.1111/j.1365-2958.2005.05008.x
- Battaglia-Brunet, F., M.-C. Dictor, F. Garrido, C. Crouzet, D. Morin, K. Dekeyser, M. Clarens, and P. Baranger. 2002. An As(III)-oxidizing bacterial population: Selection, characterization, and performance in bioreactors. J. Appl. Microbiol. 93: 656-667. https://doi.org/10.1046/j.1365-2672.2002.01726.x
- Battaglia-Brunet, F., C. Joulian, F. Garrido, M.-C. Dictor, D. Morin, K. Coupland, D. Johnson, K. Hallberg, and P. Baranger. 2006. Oxidation of arsenite by Thiomonas strains and characterisation of Thiomonas arsenivorans sp. nov. Antonie Van Leeuwenhoek 89: 99-108. https://doi.org/10.1007/s10482-005-9013-2
- Battaglia-Brunet, F., Y. Itard, F. Garrido, F. Delorme, C. Crouzet, C. Greffie, and C. Joulian. 2006. A simple biogeochemical process removing arsenic from a mine drainage water. Geomicrobiol. J. 23: 201-211. https://doi.org/10.1080/01490450600724282
- Bockelmann, U., U. Szewzyk, and E. Grohmann. 2003. A new enzymatic method for the detachment of particle associated soil bacteria. J. Microbiol. Methods 55: 201-211. https://doi.org/10.1016/S0167-7012(03)00144-1
- Challan Belval, S., F. Garnier, C. Michel, S. Chautard, D. Breeze, and F. Garrido. 2009. Enhancing pozzolana colonization by As(III)-oxidizing bacteria for bioremediation purposes. Appl. Microbiol. Biotechnol. 84: 565-573. https://doi.org/10.1007/s00253-009-2077-6
- Dey, E. S., E. Szewczyk, J. Wawrzynczyk, and O. Norrlow. 2006. A novel approach for characterization of exopolymeric material in sewage sludge. J. Res. Sci. Technol. 3: 97-103.
- Flemming, H.-C., T. Neu, and D. Wozniak. 2007. The EPS matrix: The "house of biofilm cells". J. Bacteriol. 189: 7945-7947. https://doi.org/10.1128/JB.00858-07
- Irie, Y., G. O'Toole, and M. Yuk. 2005. Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiol. Lett. 250: 237-243. https://doi.org/10.1016/j.femsle.2005.07.012
- Johnsen, A., M. Hausner, A. Schnell, and S. Wuertz. 2000. Evaluation of fluorescently labelled lectins for non-invasive localization of extracellular polymeric substances in Sphingomonas biofilms. Appl. Environ. Microbiol. 66: 3487-3491. https://doi.org/10.1128/AEM.66.8.3487-3491.2000
- Lu, T. and J. Collins. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 104: 11197-11202. https://doi.org/10.1073/pnas.0704624104
- Michel, C., M. Jean, S. Coulon, M.-C. Dictor, F. Delorme, D. Morin, and F. Garrido. 2007. Biofilms of As(III)-oxidising bacteria: Formation and activity studies for bioremediation process development. Appl. Microbiol. Biotechnol. 77: 457-467. https://doi.org/10.1007/s00253-007-1169-4
- Quintero, E. and R. Weiner. 1995. Evidence for the adhesive function of the exopolysaccharide of Hyphomonas strain MHS-3 in its attachment to surfaces. Appl. Environ. Microbiol. 61: 1897-1903.
- Recktenwald, M., J. Wawrzynczyk, E. Dey, and O. Norrlöw. 2008. Enhanced efficiency of inductrial-scale anaerobic digestion by the addition of glycosidic enzymes. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 43: 1536-1540. https://doi.org/10.1080/10934520802293693
- Robitaille, G., S. Moineau, D. St-Gelais, C. Vadeboncoeur, and M. Britten. 2006. Detection and quantification of capsular exopolysaccharides from Streptococcus thermophilus using lectin probes. J. Dairy Sci. 89: 4156-4162. https://doi.org/10.3168/jds.S0022-0302(06)72460-2
- Strathmann, M., J. Wingender, and H. Flemming. 2002. Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J. Microbiol. Methods 50: 237-248. https://doi.org/10.1016/S0167-7012(02)00032-5
- Wawrzynczyk, J., E. Szewczyk, O. Norrlow, and E. Dey. 2007. Application of enzymes, sodium tripolyphosphate and cation exchange resin for the release of extracellular polymeric substances from sewage sludge. Characterization of the extracted polysaccharides/glycoconjugates by a panel of lectins. J. Biotechnol. 130: 274-281. https://doi.org/10.1016/j.jbiotec.2007.04.005
- Wingender, J., T. Neu, and H. Flemming. 1999. What are bacterial extracellular polymeric substances?, pp. 1-19. In J. Wingender, T. Neu, and H. Flemming (eds.). Microbial Extracellular Polymeric Substances. Springer, New York.
- Wood, P. 1980. Specific interaction of direct dyes with polysaccharides. Carbohydr. Res. 85: 271-287. https://doi.org/10.1016/S0008-6215(00)84676-5
Cited by
- Bacterial metabolism of environmental arsenic-mechanisms and biotechnological applications vol.97, pp.9, 2011, https://doi.org/10.1007/s00253-013-4838-5
- Cryo-Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM)-in-SEM for Bio- and Organo-Mineral Interface Characterization in the Environment vol.23, pp.6, 2017, https://doi.org/10.1017/s143192761701265x
- Modulation of the mechanical properties of bacterial biofilms in response to environmental challenges vol.5, pp.5, 2011, https://doi.org/10.1039/c6bm00832a
- Methanogenic Biocathode Microbial Community Development and the Role of Bacteria vol.51, pp.9, 2011, https://doi.org/10.1021/acs.est.6b04112
- Comparison of biofilm formation and motility processes in arsenic‐resistant Thiomonas spp. strains revealed divergent response to arsenite vol.10, pp.4, 2011, https://doi.org/10.1111/1751-7915.12556
- Effect of exopolysaccharides produced by dairy starter cultures on biofilms formed on reverse osmosis membranes vol.2, pp.3, 2021, https://doi.org/10.3168/jdsc.2020-0041