DOI QR코드

DOI QR Code

Role of Exopolymeric Substances (EPS) in the Stability of the Biofilm of Thiomonas arsenivorans Grown on a Porous Mineral Support

  • Received : 2010.01.18
  • Accepted : 2010.11.10
  • Published : 2011.02.28

Abstract

Biochemical methods were selected to evaluate the role of exopolymeric substances in the stability of biofilms used in bioremediation processes. Biofilms of Thiomonas arsenivorans formed on pozzolana were thus treated with pronase (protein target), lectins (Con A or PNA), calcofluor or periodic acid (polysaccharides target), DNase (DNA target), and lipase (triglycerides target). Neither protease nor DNase treatments had any effect on bacterial adhesion. Lectins and calcofluor treatments mainly affected young biofilms. Lipase treatment had a noticeable effect on biofilm stability whatever the biofilm age. Results suggest that it would be an increased resistance of mature biofilms that protects them from external attacks.

Keywords

References

  1. Allesen-Holm, M., K. Bundvig Barken, L. Yang, M. Klausen, J. Webb, S. Kjelleberg, S. Molin, M. Givskov, and T. Tolker- Nielsen. 2006. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol. 59: 1114-1128. https://doi.org/10.1111/j.1365-2958.2005.05008.x
  2. Battaglia-Brunet, F., M.-C. Dictor, F. Garrido, C. Crouzet, D. Morin, K. Dekeyser, M. Clarens, and P. Baranger. 2002. An As(III)-oxidizing bacterial population: Selection, characterization, and performance in bioreactors. J. Appl. Microbiol. 93: 656-667. https://doi.org/10.1046/j.1365-2672.2002.01726.x
  3. Battaglia-Brunet, F., C. Joulian, F. Garrido, M.-C. Dictor, D. Morin, K. Coupland, D. Johnson, K. Hallberg, and P. Baranger. 2006. Oxidation of arsenite by Thiomonas strains and characterisation of Thiomonas arsenivorans sp. nov. Antonie Van Leeuwenhoek 89: 99-108. https://doi.org/10.1007/s10482-005-9013-2
  4. Battaglia-Brunet, F., Y. Itard, F. Garrido, F. Delorme, C. Crouzet, C. Greffie, and C. Joulian. 2006. A simple biogeochemical process removing arsenic from a mine drainage water. Geomicrobiol. J. 23: 201-211. https://doi.org/10.1080/01490450600724282
  5. Bockelmann, U., U. Szewzyk, and E. Grohmann. 2003. A new enzymatic method for the detachment of particle associated soil bacteria. J. Microbiol. Methods 55: 201-211. https://doi.org/10.1016/S0167-7012(03)00144-1
  6. Challan Belval, S., F. Garnier, C. Michel, S. Chautard, D. Breeze, and F. Garrido. 2009. Enhancing pozzolana colonization by As(III)-oxidizing bacteria for bioremediation purposes. Appl. Microbiol. Biotechnol. 84: 565-573. https://doi.org/10.1007/s00253-009-2077-6
  7. Dey, E. S., E. Szewczyk, J. Wawrzynczyk, and O. Norrlow. 2006. A novel approach for characterization of exopolymeric material in sewage sludge. J. Res. Sci. Technol. 3: 97-103.
  8. Flemming, H.-C., T. Neu, and D. Wozniak. 2007. The EPS matrix: The "house of biofilm cells". J. Bacteriol. 189: 7945-7947. https://doi.org/10.1128/JB.00858-07
  9. Irie, Y., G. O'Toole, and M. Yuk. 2005. Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiol. Lett. 250: 237-243. https://doi.org/10.1016/j.femsle.2005.07.012
  10. Johnsen, A., M. Hausner, A. Schnell, and S. Wuertz. 2000. Evaluation of fluorescently labelled lectins for non-invasive localization of extracellular polymeric substances in Sphingomonas biofilms. Appl. Environ. Microbiol. 66: 3487-3491. https://doi.org/10.1128/AEM.66.8.3487-3491.2000
  11. Lu, T. and J. Collins. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 104: 11197-11202. https://doi.org/10.1073/pnas.0704624104
  12. Michel, C., M. Jean, S. Coulon, M.-C. Dictor, F. Delorme, D. Morin, and F. Garrido. 2007. Biofilms of As(III)-oxidising bacteria: Formation and activity studies for bioremediation process development. Appl. Microbiol. Biotechnol. 77: 457-467. https://doi.org/10.1007/s00253-007-1169-4
  13. Quintero, E. and R. Weiner. 1995. Evidence for the adhesive function of the exopolysaccharide of Hyphomonas strain MHS-3 in its attachment to surfaces. Appl. Environ. Microbiol. 61: 1897-1903.
  14. Recktenwald, M., J. Wawrzynczyk, E. Dey, and O. Norrlöw. 2008. Enhanced efficiency of inductrial-scale anaerobic digestion by the addition of glycosidic enzymes. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 43: 1536-1540. https://doi.org/10.1080/10934520802293693
  15. Robitaille, G., S. Moineau, D. St-Gelais, C. Vadeboncoeur, and M. Britten. 2006. Detection and quantification of capsular exopolysaccharides from Streptococcus thermophilus using lectin probes. J. Dairy Sci. 89: 4156-4162. https://doi.org/10.3168/jds.S0022-0302(06)72460-2
  16. Strathmann, M., J. Wingender, and H. Flemming. 2002. Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J. Microbiol. Methods 50: 237-248. https://doi.org/10.1016/S0167-7012(02)00032-5
  17. Wawrzynczyk, J., E. Szewczyk, O. Norrlow, and E. Dey. 2007. Application of enzymes, sodium tripolyphosphate and cation exchange resin for the release of extracellular polymeric substances from sewage sludge. Characterization of the extracted polysaccharides/glycoconjugates by a panel of lectins. J. Biotechnol. 130: 274-281. https://doi.org/10.1016/j.jbiotec.2007.04.005
  18. Wingender, J., T. Neu, and H. Flemming. 1999. What are bacterial extracellular polymeric substances?, pp. 1-19. In J. Wingender, T. Neu, and H. Flemming (eds.). Microbial Extracellular Polymeric Substances. Springer, New York.
  19. Wood, P. 1980. Specific interaction of direct dyes with polysaccharides. Carbohydr. Res. 85: 271-287. https://doi.org/10.1016/S0008-6215(00)84676-5

Cited by

  1. Bacterial metabolism of environmental arsenic-mechanisms and biotechnological applications vol.97, pp.9, 2011, https://doi.org/10.1007/s00253-013-4838-5
  2. Cryo-Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM)-in-SEM for Bio- and Organo-Mineral Interface Characterization in the Environment vol.23, pp.6, 2017, https://doi.org/10.1017/s143192761701265x
  3. Modulation of the mechanical properties of bacterial biofilms in response to environmental challenges vol.5, pp.5, 2011, https://doi.org/10.1039/c6bm00832a
  4. Methanogenic Biocathode Microbial Community Development and the Role of Bacteria vol.51, pp.9, 2011, https://doi.org/10.1021/acs.est.6b04112
  5. Comparison of biofilm formation and motility processes in arsenic‐resistant Thiomonas spp. strains revealed divergent response to arsenite vol.10, pp.4, 2011, https://doi.org/10.1111/1751-7915.12556
  6. Effect of exopolysaccharides produced by dairy starter cultures on biofilms formed on reverse osmosis membranes vol.2, pp.3, 2021, https://doi.org/10.3168/jdsc.2020-0041