References
- Chassagnole, C., N. Noisommit-Rizzi, J. W. Schmid, K. Mauch, and M. Reuss. 2002. Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol. Bioeng. 79: 53-73. https://doi.org/10.1002/bit.10288
- de Koning, W. and K. van Dam. 1992. A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal. Biochem. 204: 118-123. https://doi.org/10.1016/0003-2697(92)90149-2
- Doi, Y. 1990. Microbial Polyesters. VCH Publishers, NY, USA.
- Faijes, M., A. E Mars, and E. J. Smid. 2007. Comparision of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum. Microb. Cell Fact. 6: 27. https://doi.org/10.1186/1475-2859-6-27
- Fromm, H. J. and V. Zewe. 1962. Kinetics studies of yeast hexokinase. J. Biol. Chem. 237: 3027-3032.
- Heinrich, R. and T. A. Rapoport. 1974. A linear steady state treatment of enzymatic chains: General properties, control and effector strength. Eur. J. Biochem. 42: 89-95. https://doi.org/10.1111/j.1432-1033.1974.tb03318.x
- Hoefnagel, M. H. N., M. J. C. Starrenburg, D. E. Martens, J. Hugenholtz, M. Kleerebezem, I. Van Swam, R. Bongers, H. V. Westerhoff, and J. L. Snoep. 2002. Metabolic engineering of lactic acid bacteria, the combined approach: Kinetic modelling, metabolic control and experimental analysis. Microbiology 148: 1003-1013. https://doi.org/10.1099/00221287-148-4-1003
- Hoefnagel, M. H. N., A. van der Burgt, D. E. Martens, J. Hugenholtz, and J. L. Snoep. 2002. Time dependent responses of glycolytic intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out experiments. Mol. Biol. Rep. 29: 157-161. https://doi.org/10.1023/A:1020313409954
- Ishii, N., M. Robert, Y. Nakayama, A. Kanai, and M. Tomita. 2004. Toward large-scale modeling of the microbial cell for computer simulation. J. Biotechnol. 113: 281-294. https://doi.org/10.1016/j.jbiotec.2004.04.038
- Kacser, H. and J. A Burns. 1973. The control of flux. Symp. Soc. Exp. Biol. 27: 65-104.
-
Katoh, T., D. Yuguchi, H. Yoshii, H. Shi, and K .Shimizu. 1999. Dynamics and modeling on fermentative production of poly (
$\beta$ -hydroxybutyric acid) from sugars via lactate by a mixed culture of Lactobacillus delbrueckii and Alcaligenes eutrophus. J. Biotechnol. 67: 113-134. https://doi.org/10.1016/S0168-1656(98)00177-1 - Lee, S. Y., D. Y. Lee, and T. Y. Kim. 2005. Systems biotechnology for strain improvement. Trends Biotechnol. 23: 349-358. https://doi.org/10.1016/j.tibtech.2005.05.003
- Luo, B., K. Groenke, R. Takors, C. Wandrey, and M. Oldiges. 2007. Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pahtway and tricarboxylic acid cycle by liquid chromatography-mass spectrometery. J. Chromatogr. A 1147: 153-164. https://doi.org/10.1016/j.chroma.2007.02.034
- Melchiorsen, C. R., N. B. Siemsen Jensen, B. Christensen, V. K. Jokumsen, and J. Villadsen. 2000. Dynamics of pyruvate metabolism in Lactococcus lactis. Biotechnol. Bioeng. 74: 271-279.
- .Neves, A. R., A. Ramos, C. M. Nunes, M. Kleerebezem, J. Hugenholtz, M. W. de Vos, J. Almeida, and H. Santos. 1999. In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Biotechnol, Bioeng. 64: 200-212. https://doi.org/10.1002/(SICI)1097-0290(19990720)64:2<200::AID-BIT9>3.0.CO;2-K
- Neves, A. R., W. A. Pool, J. Kok, O. P. Kuipers, and H. Santos. 2005. Overview on sugar metabolism and its control in Lactococcus lactis - The input from in vivo NMR. FEMS Microbiol. Rev. 29: 531-554.
- Ramos, A., A. R. Neves, and H. Santos. 2002. Metabolism of lactic acid bacteria studied by nuclear magnetic resonance. Antonie Van Leeuwenhoek 82: 249-261. https://doi.org/10.1023/A:1020664422633
- Richter, O., A. Betz, and C. Giersch. 1975. The response of oscillating glycolysis to perturbations in the NADH/NAD system: A comparison between experiments and a computer model. BioSystems 7: 137-146. https://doi.org/10.1016/0303-2647(75)90051-9
- Rizzi, M., U. Theobald, E. Querfurth, T. Rohrhirsch, M. Baltes, and M. Reuss. 1996. In vivo investigations of glucose transport in Saccharomyces cerevisiae. Biotechnol. Bioeng. 49: 316-327.
- Rizzi, M., M. Baltes, U. Theobald, and M. Reuss. 1997. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae; II. Mathematical model. Biotechnol. Bioeng. 55: 592-608. https://doi.org/10.1002/(SICI)1097-0290(19970820)55:4<592::AID-BIT2>3.0.CO;2-C
- Sjoberg, A., I. Persson, M. Quednau, and B. Hahn-Hagerdal. 1995. The influence of limiting and non-limiting growth conditions on glucose and maltose metabolism in Lactococcus lactis ssp. lactis strains. Appl. Microbiol. Biotechnol. 42: 931-938. https://doi.org/10.1007/BF00191193
- Stephanopoulos, G. N., A. A. Aristidou, and J. Nielsen. 1998. Metabolic Engineering. Academic Press, San Diego, USA.
- Theobald, U., W. Mailinger, M. Blates, M. Rizzi, and M. Reuss. 1997. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol. Bioeng. 55: 305-316. https://doi.org/10.1002/(SICI)1097-0290(19970720)55:2<305::AID-BIT8>3.0.CO;2-M
- Thompson, J. 1987. Regulation of sugar transport and metabolism in lactic acid bacteria. FEMS Microbiol. Lett. 46: 221-231. https://doi.org/10.1111/j.1574-6968.1987.tb02462.x
- van Niel, W. J., K. Hofvendahl, and B. Hahn-Hagerdal. 2002. Formation and conversion of oxygen metabolites by Lactococcus lactis subsp. lactis ATCC 19435 under different growth conditions. Appl. Environ. Microbiol. 68: 4350-4356. https://doi.org/10.1128/AEM.68.9.4350-4356.2002
- Vickory, B. T. 1985. Lactic Acid, pp. 761-776. Dic Pergamon, Toronto, Canada.
Cited by
- Engineering of self-sustaining systems: Substituting the yeast glucose transporter plus hexokinase for the Lactococcus lactis phosphotransferase system in a Lactococcus lactis network in silico vol.7, pp.7, 2011, https://doi.org/10.1002/biot.201100314
- Role of phosphate in the central metabolism of two lactic acid bacteria – a comparative systems biology approach vol.279, pp.7, 2012, https://doi.org/10.1111/j.1742-4658.2012.08523.x
- Systematic Applications of Metabolomics in Metabolic Engineering vol.2, pp.4, 2011, https://doi.org/10.3390/metabo2041090
- Protein turnover forms one of the highest maintenance costs in Lactococcus lactis vol.160, pp.7, 2014, https://doi.org/10.1099/mic.0.078089-0
- An extended dynamic model of Lactococcus lactis metabolism for mannitol and 2,3-butanediol production vol.10, pp.3, 2014, https://doi.org/10.1039/c3mb70265k
- Monte-Carlo Modeling of the Central Carbon Metabolism of Lactococcus lactis : Insights into Metabolic Regulation vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0106453
- Tracing regulatory routes in metabolism using generalised supply-demand analysis vol.9, pp.1, 2011, https://doi.org/10.1186/s12918-015-0236-1
- Analysis of primary metabolites of Morchella fruit bodies and mycelium based on widely targeted metabolomics vol.204, pp.1, 2011, https://doi.org/10.1007/s00203-021-02612-z