DOI QR코드

DOI QR Code

Bioelectrochemical Mn(II) Leaching from Manganese Ore by Lactococcus lactis SK071115

  • Jeon, Bo-Young (Department of Biological Engineering, Seokyeong University) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • Received : 2010.07.27
  • Accepted : 2010.11.10
  • Published : 2011.02.28

Abstract

L. lactis sk071115 has been shown to grow more actively and generate lower levels of lactate in glucose-defined medium with nitrate than in medium with Mn(IV). By adding Mn(IV) to a L. lactis culture, lactate production was relatively reduced in combination with Mn(II) production, but cell mass production levels did not increase. Both cell-free extract and intact L. lactis cells reacted electrochemically with Mn(IV) but did not react with Mn(II) upon cyclic voltammetry using neutral red (NR) as an electron mediator. A modified graphite felt cathode with NR (NR-cathode) was employed to induce electrochemical reducing equivalence for bacterial metabolism. Cell-free L. lactis extract catalyzed the reduction of Mn(IV) to Mn(II) under both control and electrochemical reduction conditions; however, the levels of Mn(II) generated under electrochemical reduction conditions were approximately 4 times those generated under control conditions. The levels of Mn(II) generated by the catalysis of L. lactis immobilized in the NR-cathode (L-NR-cathode) under electrochemical reduction conditions were more than 4 times that generated under control conditions. Mn(II) production levels were increased by approximately 2.5 and 4.5 times by the addition of citrate to the reactant under control and electrochemical reduction conditions, respectively. The cumulative Mn(II) produced from manganese ore by catalysis of the L-NR-cathode for 30 days reached levels of approximately 3,800 and 16,000 mg/l under control and electrochemical reduction conditions, respectively. In conclusion, the electrochemical reduction reaction generated by the NR-cathode activated the biochemical reduction of Mn(IV) to Mn(II) by L. lactis.

Keywords

References

  1. Aller, R. C. and P. D. Rude. 1988. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochim. Cosmochim. Acta 52: 751-765. https://doi.org/10.1016/0016-7037(88)90335-3
  2. Di-Ruggiero, J. and A. M. Gounot. 1990. Microbial manganese reduction mediated by bacterial strains isolated from aquifer sediments. Microb. Ecol. 20: 53-63. https://doi.org/10.1007/BF02543866
  3. Dougherty, D. P., F. Bredidt Jr., R. F. McFeeters, and S. R. Lubkin. 2002. Energy-based dynamic model for variable temperature batch fermentation by Lactococcus lactis. Appl. Environ. Microbiol. 68: 2468-2478. https://doi.org/10.1128/AEM.68.5.2468-2478.2002
  4. Ehrlich, H. L. 1980. Bacterial leaching of manganese ores, pp. 609-614. In P. A. Trudinger, M. R. Walter, and B. J. Ralph (eds.). Biogeochemistry of Ancient and Modern Environments. Springer-Verlag, New York.
  5. Ghiorse, W. C. and H. L. Ehrlich. 1976. Electron transport components of the $MnO_{2}$ reductase system and the location of the terminal reductase in a marine Bacillus. Appl. Environ. Microbiol. 31: 977-985.
  6. Ghiorse, W. C. 1988. Microbial reduction of manganese and iron, pp. 305-331. In A. J. B. Zehnder (ed.). Biology of Anaerobic Microorganisms. John Wiley & Sons, Inc., New York.
  7. Goebel, B. M. and E. Stackebrandt. 1994. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl. Environ. Microbiol. 60: 1614-1621.
  8. Greenberg, A. E., L. S. Clesceri, and A. D. Eaton. 1992. Standard Methods for the Examination of Water and Wastewater. 18th Ed., pp. 3-75-3-76. American Public Health Association. Washington DC.
  9. Harrison, A. P. Jr. 1984. The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annu. Rev. Microbiol. 38: 265-292. https://doi.org/10.1146/annurev.mi.38.100184.001405
  10. Hutchins, S. R., M. S. Davidson, J. S. Brierly, and C. L. Brierly. 1986. Microorganisms in reclamation of metals. Annu. Rev. Microbiol. 40: 311-336. https://doi.org/10.1146/annurev.mi.40.100186.001523
  11. Jeon, B. Y. and D. H. Park. 2010. Improvement of ethanol production by electrochemical redox combination of Zymomonas mobilis and Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 20: 94-100.
  12. Kang, H. S., B. K. Na, and D. H Park. 2007. Oxidation of butane to butanol coupled to electrochemical redox reaction of $NAD^{+}$/NADH. Biotech. Lett. 29: 1277-1280. https://doi.org/10.1007/s10529-007-9385-7
  13. Karavaiko, G. I., V. A. Yurichenko, V. I. Remizov, and T. M. Klyushnikova. 1987. Reduction of manganese dioxide by cellfree Acinetobacter calcoaceticus extracts. Microbiology 55: 553-558.
  14. Kim, B. H. and G. M. Gadd. 2008. Bacterial Physiology and Metabolism, pp. 187-192. Cambridge University Press, New York.
  15. Lee, K. Y. and T. R. Heo. 2000. Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl. Environ. Microbiol. 66: 869-873. https://doi.org/10.1128/AEM.66.2.869-873.2000
  16. Lee, W. J. and D. H. Park. 2009. Electrochemical activation of nitrate reduction to nitrogen by Ochrobactrum sp. G3-1 using noncompartmented electrochemical bioreactor. J. Microbiol. Biotechnol. 19: 836-844.
  17. Lovley, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55: 259-287.
  18. Lovley, D. R. and E. J. P. Phillips. 1988. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54: 1472-1480.
  19. Lovley, D. R. and E. J. P. Phillips. 1989. Requirement for a microbial consortium to completely oxidize glucose in Fe(III)-reducing sediments. Appl. Environ. Microbiol. 55: 3234-3236.
  20. Lovley, D. R., E. J. P. Phillips, and D. J. Lonergan. 1989. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55: 700-706.
  21. Myers, C. R. and K. H. Nealson. 1988. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1. J. Bacteriol. 172: 6232-6238.
  22. Myers, C. R. and K. H. Nealson. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240: 1319-1321. https://doi.org/10.1126/science.240.4857.1319
  23. Park, D. H. and B. H. Kim. 2001. Growth properties of the iron-reducing bacteria, Shewanella putrefaciens IR-1 and MR-1 coupling to reduction of Fe(III) to Fe(II). J. Microbiol. 39: 273-278.
  24. Park, D. H., M. Laivenieks, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65: 2912-2917.
  25. Park, S. M., B. I. Sang, D. W. Park, and D. H. Park. 2005. Electrochemical reduction of xylose to xylitol by whole cells or crude enzyme of Candida peltata. J. Microbiol. 43: 451-455.
  26. Payne, W. J. and W. J. Wiebe. 1978. Growth yield and efficiency in chemosynthetic microorganisms. Annu. Rev. Microbiol. 133: 155-183.
  27. Rossi, G. and H. L. Ehrlich. 1990. Other bioleaching processes, pp. 149-170. In H. L. Ehrlich and C. L. Brierley (eds.). Microbial Mineral Recovery. McGraw-Hill, Inc., New York.
  28. Seo, H. N., B. Y. Jeon, H. T. Tran, D. H. Ahn, and D. H. Park. 2010. Influence of pulsed electric field on growth of soil bacteria and pepper plant. Korean J. Chem. Eng. 27: 560-566. https://doi.org/10.1007/s11814-010-0090-1
  29. Stone, A. T. 1987. Microbial metabolites and the reductive dissolution of manganese oxides: Oxalate and pyruvate. Geochim. Cosmochim. Acta 51: 919-925. https://doi.org/10.1016/0016-7037(87)90105-0
  30. Stucki, J. W., G. W. Bailey, and H. Gan. 1995. Redox reactions in phyllosilicates and their effects on metal transport, pp. 146-155. In H. E. Allen, C. P. Huang, G. W. Bailey, and A. R. Bowers (eds.). Metal Speciation and Contamination of Soil. CRC Press, Inc., Salem.
  31. Sugio, T., Y. Tsujita, K. Hirayam, K. Inagaki, and T. Tano. 1988. Mechanism of tetravalent manganese reduction with elemental sulfur by Thiobacillus ferrooxidans. Agric. Biol. Chem. 52: 185-190. https://doi.org/10.1271/bbb1961.52.185
  32. Troshanov, E. P. 1968. Iron- and manganese-reducing microorganisms in ore-containing lakes of the Karelian Isthmus. Microbiology 37: 786-790.
  33. Troshanov, E. P. 1969. Conditions affecting the reduction of iron and manganese by bacteria in the ore-bearing lakes of the Karelian Isthmus. Microbiology 38: 528-535.
  34. Verho, R., J. Londesborough, M. Penttila, and P. Richard. 2003. Engineering edox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69: 5892-5897. https://doi.org/10.1128/AEM.69.10.5892-5897.2003
  35. Yun, S. H., T. S. Hwang, and D. H. Park. 2007. Metabolic characterization of lactic acid bacterium Lactococcus garvieae sk11, capable of reducing ferric iron, nitrate, and fumarate. J. Microbiol. Biotechnol. 17: 218-225.

Cited by

  1. Review of Reductive Leaching of Iron by Anaerobic Bacteria vol.35, pp.2, 2011, https://doi.org/10.1080/08827508.2012.703627