References
- Aller, R. C. and P. D. Rude. 1988. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochim. Cosmochim. Acta 52: 751-765. https://doi.org/10.1016/0016-7037(88)90335-3
- Di-Ruggiero, J. and A. M. Gounot. 1990. Microbial manganese reduction mediated by bacterial strains isolated from aquifer sediments. Microb. Ecol. 20: 53-63. https://doi.org/10.1007/BF02543866
- Dougherty, D. P., F. Bredidt Jr., R. F. McFeeters, and S. R. Lubkin. 2002. Energy-based dynamic model for variable temperature batch fermentation by Lactococcus lactis. Appl. Environ. Microbiol. 68: 2468-2478. https://doi.org/10.1128/AEM.68.5.2468-2478.2002
- Ehrlich, H. L. 1980. Bacterial leaching of manganese ores, pp. 609-614. In P. A. Trudinger, M. R. Walter, and B. J. Ralph (eds.). Biogeochemistry of Ancient and Modern Environments. Springer-Verlag, New York.
-
Ghiorse, W. C. and H. L. Ehrlich. 1976. Electron transport components of the
$MnO_{2}$ reductase system and the location of the terminal reductase in a marine Bacillus. Appl. Environ. Microbiol. 31: 977-985. - Ghiorse, W. C. 1988. Microbial reduction of manganese and iron, pp. 305-331. In A. J. B. Zehnder (ed.). Biology of Anaerobic Microorganisms. John Wiley & Sons, Inc., New York.
- Goebel, B. M. and E. Stackebrandt. 1994. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl. Environ. Microbiol. 60: 1614-1621.
- Greenberg, A. E., L. S. Clesceri, and A. D. Eaton. 1992. Standard Methods for the Examination of Water and Wastewater. 18th Ed., pp. 3-75-3-76. American Public Health Association. Washington DC.
- Harrison, A. P. Jr. 1984. The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annu. Rev. Microbiol. 38: 265-292. https://doi.org/10.1146/annurev.mi.38.100184.001405
- Hutchins, S. R., M. S. Davidson, J. S. Brierly, and C. L. Brierly. 1986. Microorganisms in reclamation of metals. Annu. Rev. Microbiol. 40: 311-336. https://doi.org/10.1146/annurev.mi.40.100186.001523
- Jeon, B. Y. and D. H. Park. 2010. Improvement of ethanol production by electrochemical redox combination of Zymomonas mobilis and Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 20: 94-100.
-
Kang, H. S., B. K. Na, and D. H Park. 2007. Oxidation of butane to butanol coupled to electrochemical redox reaction of
$NAD^{+}$ /NADH. Biotech. Lett. 29: 1277-1280. https://doi.org/10.1007/s10529-007-9385-7 - Karavaiko, G. I., V. A. Yurichenko, V. I. Remizov, and T. M. Klyushnikova. 1987. Reduction of manganese dioxide by cellfree Acinetobacter calcoaceticus extracts. Microbiology 55: 553-558.
- Kim, B. H. and G. M. Gadd. 2008. Bacterial Physiology and Metabolism, pp. 187-192. Cambridge University Press, New York.
- Lee, K. Y. and T. R. Heo. 2000. Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl. Environ. Microbiol. 66: 869-873. https://doi.org/10.1128/AEM.66.2.869-873.2000
- Lee, W. J. and D. H. Park. 2009. Electrochemical activation of nitrate reduction to nitrogen by Ochrobactrum sp. G3-1 using noncompartmented electrochemical bioreactor. J. Microbiol. Biotechnol. 19: 836-844.
- Lovley, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55: 259-287.
- Lovley, D. R. and E. J. P. Phillips. 1988. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54: 1472-1480.
- Lovley, D. R. and E. J. P. Phillips. 1989. Requirement for a microbial consortium to completely oxidize glucose in Fe(III)-reducing sediments. Appl. Environ. Microbiol. 55: 3234-3236.
- Lovley, D. R., E. J. P. Phillips, and D. J. Lonergan. 1989. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55: 700-706.
- Myers, C. R. and K. H. Nealson. 1988. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1. J. Bacteriol. 172: 6232-6238.
- Myers, C. R. and K. H. Nealson. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240: 1319-1321. https://doi.org/10.1126/science.240.4857.1319
- Park, D. H. and B. H. Kim. 2001. Growth properties of the iron-reducing bacteria, Shewanella putrefaciens IR-1 and MR-1 coupling to reduction of Fe(III) to Fe(II). J. Microbiol. 39: 273-278.
- Park, D. H., M. Laivenieks, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65: 2912-2917.
- Park, S. M., B. I. Sang, D. W. Park, and D. H. Park. 2005. Electrochemical reduction of xylose to xylitol by whole cells or crude enzyme of Candida peltata. J. Microbiol. 43: 451-455.
- Payne, W. J. and W. J. Wiebe. 1978. Growth yield and efficiency in chemosynthetic microorganisms. Annu. Rev. Microbiol. 133: 155-183.
- Rossi, G. and H. L. Ehrlich. 1990. Other bioleaching processes, pp. 149-170. In H. L. Ehrlich and C. L. Brierley (eds.). Microbial Mineral Recovery. McGraw-Hill, Inc., New York.
- Seo, H. N., B. Y. Jeon, H. T. Tran, D. H. Ahn, and D. H. Park. 2010. Influence of pulsed electric field on growth of soil bacteria and pepper plant. Korean J. Chem. Eng. 27: 560-566. https://doi.org/10.1007/s11814-010-0090-1
- Stone, A. T. 1987. Microbial metabolites and the reductive dissolution of manganese oxides: Oxalate and pyruvate. Geochim. Cosmochim. Acta 51: 919-925. https://doi.org/10.1016/0016-7037(87)90105-0
- Stucki, J. W., G. W. Bailey, and H. Gan. 1995. Redox reactions in phyllosilicates and their effects on metal transport, pp. 146-155. In H. E. Allen, C. P. Huang, G. W. Bailey, and A. R. Bowers (eds.). Metal Speciation and Contamination of Soil. CRC Press, Inc., Salem.
- Sugio, T., Y. Tsujita, K. Hirayam, K. Inagaki, and T. Tano. 1988. Mechanism of tetravalent manganese reduction with elemental sulfur by Thiobacillus ferrooxidans. Agric. Biol. Chem. 52: 185-190. https://doi.org/10.1271/bbb1961.52.185
- Troshanov, E. P. 1968. Iron- and manganese-reducing microorganisms in ore-containing lakes of the Karelian Isthmus. Microbiology 37: 786-790.
- Troshanov, E. P. 1969. Conditions affecting the reduction of iron and manganese by bacteria in the ore-bearing lakes of the Karelian Isthmus. Microbiology 38: 528-535.
- Verho, R., J. Londesborough, M. Penttila, and P. Richard. 2003. Engineering edox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69: 5892-5897. https://doi.org/10.1128/AEM.69.10.5892-5897.2003
- Yun, S. H., T. S. Hwang, and D. H. Park. 2007. Metabolic characterization of lactic acid bacterium Lactococcus garvieae sk11, capable of reducing ferric iron, nitrate, and fumarate. J. Microbiol. Biotechnol. 17: 218-225.
Cited by
- Review of Reductive Leaching of Iron by Anaerobic Bacteria vol.35, pp.2, 2011, https://doi.org/10.1080/08827508.2012.703627