DOI QR코드

DOI QR Code

Metal Biosorption by Surface-Layer Proteins from Bacillus Species

  • Allievi, Mariana Claudia (Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Departamento de Quimica Biologica) ;
  • Florencia, Sabbione (Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Departamento de Quimica Biologica) ;
  • Mariano, Prado-Acosta (Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Departamento de Quimica Biologica) ;
  • Mercedes, Palomino Maria (Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Departamento de Quimica Biologica) ;
  • Ruzal, Sandra M. (Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Departamento de Quimica Biologica) ;
  • Carmen, Sanchez-Rivas (Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Departamento de Quimica Biologica)
  • 투고 : 2010.09.30
  • 심사 : 2010.11.11
  • 발행 : 2011.02.28

초록

Bacillus species have been involved in metal association as biosorbents, but there is not a clear understanding of this chelating property. In order to evaluate this metal chelating capacity, cultures and spores from Grampositive bacteria of species either able or unable to produce surface layer proteins (S-layers) were analyzed for their capacity of copper biosorption. Only those endowed of S-layers, like Bacillus sphaericus and B. thuringiensis, showed a significant biosorption capacity. This capacity (nearly 50%) was retained after heating of cultures, thus supporting that structural elements of the envelopes are responsible for such activity. Purified S-layers from two Bacillus sphaericus strains had the ability to biosorb copper. Copper biosorption parameters were determined for strain B. sphaericus 2362, and after analyses by means of the Langmuir model, the affinity and capacity were shown to be comparable to other bacterial biosorbents. A competitive effect of $Ca^{2+}$ and $Zn^{2+}$, but not of $Cd^{2+}$, was also observed, thus indicating that other cations may be biosorbed by this protein. Spores that have been shown to be proficient for copper biosorption were further analyzed for the presence of S-layer content. The retention of S-layers by these spores was clearly observed, and after extensive treatment to eliminate the S-layers, the biosorption capacity of these spores was significantly reduced. For the first time, a direct correlation between S-layer protein content and metal biosorption capacity is shown. This capacity is linked to the retention of S-layer proteins attached to Bacillus spores and cells.

키워드

참고문헌

  1. Andreazza, R., S. Pieniz, L. Wolf, M. K. Lee, F. A. Camargo, and B. C. Okeke. 2010. Characterization of copper bioreduction and biosorption by a highly copper resistant bacterium isolated from copper-contaminated vineyard soil. Sci. Total Environ. 408: 1501-1507. https://doi.org/10.1016/j.scitotenv.2009.12.017
  2. Brenner, A. J. and E. D. Harris. 1995. A quantitative test for copper using bicinchoninic acid. Anal. Biochem. 226: 80-84. https://doi.org/10.1006/abio.1995.1194
  3. Chung, L., K. S. Rajan, E. Merdinger, and N. Grecz. 1971. Coordinative binding of divalent cations with ligands related to bacterial spores. Equilibrium studies. Biophys. J. 11: 469-482. https://doi.org/10.1016/S0006-3495(71)86229-X
  4. Cucchi, A. and C. Sanchez Rivas. 1994. Sensitivity of growing cells and spores of Bacillus thuringiensis var. israelensis and Bacillus sphaericus to osmotic variations. Curr. Microbiol. 28: 123-127. https://doi.org/10.1007/BF01569058
  5. Dick, G. J., J. W. Torpey, T. J. Beveridge, and B. M. Tebo. 2008. Direct identification of a bacterial manganese(II) oxidase, the multicopper oxidase MnxG, from spores of several different marine Bacillus species. Appl. Environ. Microbiol. 74: 1527-1534. https://doi.org/10.1128/AEM.01240-07
  6. Driks, A. 1999. Bacillus subtilis spore coat. Microbiol. Mol. Biol. Rev. 63: 1-20.
  7. Engelhardt, H. 2007. Are S-layers exoskeletons? The basic function of protein surface layers revisited. J. Struct. Biol. 160: 115-124. https://doi.org/10.1016/j.jsb.2007.08.003
  8. Francis, C. A., K. L. Casciotti, and B. M. Tebo. 2002. Localization of Mn(II)-oxidizing activity and the putative multicopper oxidase, MnxG, to the exosporium of the marine Bacillus sp. strain SG-1. Arch. Microbiol. 178: 450-456. https://doi.org/10.1007/s00203-002-0472-9
  9. Garavaglia, L., S. B. Cerdeira, and D. L. Vullo. 2010. Chromium (VI) biotransformation by beta- and gamma-Proteobacteria from natural polluted environments: A combined biological and chemical treatment for industrial wastes. J. Hazard Mater. 175: 104-110. https://doi.org/10.1016/j.jhazmat.2009.09.134
  10. Guo, G., L. Zhang, Z. Zhou, Q. Ma, J. Liu, C. Zhu, L. Zhu, Z. Yu, and M. Sun. 2008. A new group of parasporal inclusions encoded by the S-layer gene of Bacillus thuringiensis. FEMS Microbiol. Lett. 282: 1-7. https://doi.org/10.1111/j.1574-6968.2008.01087.x
  11. He, L. M. and B. M. Tebo. 1998. Surface charge properties of and Cu(II) adsorption by spores of the marine Bacillus sp. strain SG-1. Appl. Environ. Microbiol. 64: 1123-1129.
  12. Hullo, M. F., I. Moszer, A. Danchin, and I. Martin-Verstraete. 2001. CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 183: 5426-5430. https://doi.org/10.1128/JB.183.18.5426-5430.2001
  13. Jakava-Viljanen, M., S. Avall-Jaaskelainen, P. Messner, U. B. Sleytr, and A. Palva. 2002. Isolation of three new surface layer protein genes (slp) from Lactobacillus brevis ATCC 14869 and characterization of the change in their expression under aerated and anaerobic conditions. J. Bacteriol. 184: 6786-6795. https://doi.org/10.1128/JB.184.24.6786-6795.2002
  14. Kern, J. W. and O. Schneewind. 2008. BslA, a pXO1-encoded adhesin of Bacillus anthracis. Mol. Microbiol. 68: 504-515. https://doi.org/10.1111/j.1365-2958.2008.06169.x
  15. Lewis, L. O., A. A. Yousten, and R. G. Murray. 1987. Characterization of the surface protein layers of the mosquitopathogenic strains of Bacillus sphaericus. J. Bacteriol. 169: 72-79. https://doi.org/10.1128/jb.169.1.72-79.1987
  16. Liu, M., S. Li, S. Hu, C. Zhao, D. Bi, and M. Sun. 2008. Display of avian influenza virus nucleoprotein on Bacillus thuringiensis cell surface using CTC as a fusion partner. Appl. Microbiol. Biotechnol. 78: 669-676. https://doi.org/10.1007/s00253-008-1345-1
  17. Lo, W., L. M. Ng, H. Chua, P. H. Yu, S. N. Sin, and P. K. Wong. 2003. Biosorption and desorption of copper(II) ions by Bacillus sp. Appl. Biochem. Biotechnol. 105-108: 581-591.
  18. Merroun, M. L., J. Raff, A. Rossberg, C. Hennig, T. Reich, and S. Selenska-Pobell. 2005. Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12. Appl. Environ. Microbiol. 71: 5532-5543. https://doi.org/10.1128/AEM.71.9.5532-5543.2005
  19. Mignot, T., S. Mesnage, E. Couture-Tosi, M. Mock, and A. Fouet. 2002. Developmental switch of S-layer protein synthesis in Bacillus anthracis. Mol. Microbiol. 43: 1615-1627. https://doi.org/10.1046/j.1365-2958.2002.02852.x
  20. Pollmann, K. and S. Matys. 2007. Construction of an S-layer protein exhibiting modified self-assembling properties and enhanced metal binding capacities. Appl. Microbiol. Biotechnol. 75: 1079-1085. https://doi.org/10.1007/s00253-007-0937-5
  21. Pollmann, K., J. Raff, M. Merroun, K. Fahmy, and S. Selenska-Pobell. 2006. Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol. Adv. 24: 58-68. https://doi.org/10.1016/j.biotechadv.2005.06.002
  22. Prado Acosta, M., E. Valdman, F. Battaglini, S. Leite, and S. M. Ruzal. 2005. Biosorption of copper by Paenibacillus polymyxa cells and their exopolysaccharide. World J. Microbiol. Biotechnol. 21: 1157-1163. https://doi.org/10.1007/s11274-005-0381-6
  23. Prado Acosta, M., S. M. Ruzal, M. C. Allievi, M. M. Palomino, and C. Sanchez Rivas. 2010. Synergistic effects of the Lactobacillus acidophilus surface layer and nisin on bacterial growth. Appl. Environ. Microbiol. 76: 974-977. https://doi.org/10.1128/AEM.01427-09
  24. Sandman, K., R. Losick, and P. Youngman. 1987. Genetic analysis of Bacillus subtilis spo mutations generated by Tn917-mediated insertional mutagenesis. Genetics 117: 603-617.
  25. Sara, M. and U. B. Sleytr. 2000. S-Layer proteins. J. Bacteriol. 182: 859-868. https://doi.org/10.1128/JB.182.4.859-868.2000
  26. Selenska-Pobell, S., P. Panak, V. Miteva, I. Boudakov, G. Bernhard, and H. Nitsche. 1999. Selective accumulation of heavy metals by three indigenous Bacillus strains. B cereus, B megaterium from drain waters of a uranium waste pile. FEMS Microbiol. Ecol. 29: 59-67. https://doi.org/10.1111/j.1574-6941.1999.tb00598.x
  27. Smit, E., F. Oling, R. Demel, B. Martinez, and P. H. Pouwels. 2001. The S-layer protein of Lactobacillus acidophilus ATCC 4356: Identification and characterisation of domains responsible for S-protein assembly and cell wall binding. J. Mol. Biol. 305: 245-257. https://doi.org/10.1006/jmbi.2000.4258
  28. Tsekova, K., D. Todorova, V. Dencheva, and S. Ganeva. 2010. Biosorption of copper(II) and cadmium(II) from aqueous solutions by free and immobilized biomass of Aspergillus niger. Bioresour. Technol. 101: 1727-1731. https://doi.org/10.1016/j.biortech.2009.10.012
  29. Velasquez, L. and J. Dussan. 2009. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J. Hazard. Mater. 167: 713-716. https://doi.org/10.1016/j.jhazmat.2009.01.044
  30. Williams, D. D. and C. L. Turnbough. 2004. Surface layer protein EA1 is not a component of Bacillus anthracis spores but is a persistent contaminant in spore preparations. J. Bacteriol. 186: 566-569. https://doi.org/10.1128/JB.186.2.566-569.2004

피인용 문헌

  1. S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection vol.422, pp.4, 2011, https://doi.org/10.1016/j.bbrc.2012.05.031
  2. Biosorption of As (III) by Non-living Biomass of an Arsenic-Hypertolerant Bacillus cereus Strain SZ2 Isolated from a Gold Mining Environment: Equilibrium and Kinetic Study vol.171, pp.8, 2011, https://doi.org/10.1007/s12010-013-0490-x
  3. Osmotic stress adaptation in Lactobacillus casei BL23 leads to structural changes in the cell wall polymer lipoteichoic acid vol.159, pp.11, 2011, https://doi.org/10.1099/mic.0.070607-0
  4. Biosorption of arsenic (III) from aqueous solution by living cells of Bacillus cereus vol.20, pp.3, 2011, https://doi.org/10.1007/s11356-012-1249-6
  5. Identification of major zinc-binding proteins from a marine cyanobacterium: insight into metal uptake in oligotrophic environments vol.6, pp.7, 2011, https://doi.org/10.1039/c4mt00048j
  6. Biosorption Potential of Bacillus salmalaya Strain 139SI for Removal of Cr(VI) from Aqueous Solution vol.12, pp.12, 2015, https://doi.org/10.3390/ijerph121214985
  7. Toxic metals and associated sporulated bacteria on Andean hummingbird feathers vol.23, pp.22, 2011, https://doi.org/10.1007/s11356-016-7506-3
  8. Haloalkaliphilic Bacillus species from solar salterns: an ideal prokaryote for bioprospecting studies vol.66, pp.3, 2011, https://doi.org/10.1007/s13213-016-1221-7
  9. Investigation on Elimination of As(III) and As(V) from Wastewater Using Bacterial Biofilm Supported on Sawdust/MnFe2O4 Composite vol.1, pp.1, 2011, https://doi.org/10.1007/s41101-016-0002-2
  10. Optimization of simultaneous biosorption and bioaccumulation (SBB) system: a potential method for removal of As(III) and As (V) ions from wastewater vol.3, pp.10, 2016, https://doi.org/10.1016/j.matpr.2016.10.003
  11. Bioaccumulation of As(III)/As(V) ions by living cells of Corynebacterium glutamicum MTCC 2745 vol.51, pp.18, 2011, https://doi.org/10.1080/01496395.2016.1238485
  12. Sequestering of As(III) and As(V) from wastewater using a novel neem leaves/MnFe2O4 composite biosorbent vol.18, pp.12, 2016, https://doi.org/10.1080/15226514.2016.1193467
  13. Biosorption of Lead(II) by Arthrobacter sp. 25: Process Optimization and Mechanism vol.26, pp.8, 2011, https://doi.org/10.4014/jmb.1603.03074
  14. A Bacillus sp. isolated from sediments of the Sarno River mouth, Gulf of Naples (Italy) produces a biofilm biosorbing Pb(II) vol.562, pp.None, 2011, https://doi.org/10.1016/j.scitotenv.2016.04.097
  15. Reduction of Chromium(VI) by Marine BacteriumBrevibacillus laterosporusUnder Varying Saline and pH Conditions vol.34, pp.9, 2011, https://doi.org/10.1089/ees.2016.0627
  16. Identification of a Bacillus thuringiensis Surface Layer Protein with Cytotoxic Activity against MDA-MB-231 Breast Cancer Cells vol.27, pp.1, 2011, https://doi.org/10.4014/jmb.1607.07020
  17. Characterization of the binding capacity of mercurial species in Lactobacillus strains vol.97, pp.15, 2011, https://doi.org/10.1002/jsfa.8388
  18. Decrease of N-nitrosodimethylamine and N-nitrosodiethylamine by Lactobacillus pentosus R3 is associated with surface-layer proteins vol.68, pp.1, 2018, https://doi.org/10.1007/s13213-017-1314-y
  19. High Efficiency Mercury Sorption by Dead Biomass of Lysinibacillus sphaericus —New Insights into the Treatment of Contaminated Water vol.12, pp.8, 2011, https://doi.org/10.3390/ma12081296
  20. Protein profiling of metal‐resistant Bacillus cereus VITSH1 vol.127, pp.1, 2011, https://doi.org/10.1111/jam.14293
  21. Potential use ofBacillusgenera for metals removal from spent catalysts vol.54, pp.8, 2011, https://doi.org/10.1080/10934529.2019.1585720
  22. Gut microbes modulate bioaccessibility of lead in soil vol.270, pp.None, 2011, https://doi.org/10.1016/j.chemosphere.2020.128657