DOI QR코드

DOI QR Code

Effects of Diverse Water Pipe Materials on Bacterial Communities and Water Quality in the Annular Reactor

  • Jang, Hyun-Jung (Division of R&D for Water, Waterworks Research Institute) ;
  • Choi, Young-June (Division of R&D for Water, Waterworks Research Institute) ;
  • Ka, Jong-Ok (Department of Agricultural Biotechnology, Seoul National University)
  • Received : 2010.10.06
  • Accepted : 2010.11.09
  • Published : 2011.02.28

Abstract

To investigate the effects of pipe materials on biofilm accumulation and water quality, an annular reactor with the sample coupons of four pipe materials (steel, copper, stainless steel, and polyvinyl chloride) was operated under hydraulic conditions similar to a real plumbing system for 15 months. The bacterial concentrations were substantially increased in the steel and copper reactors with progression of corrosion, whereas those in stainless steel (STS) and polyvinyl chloride (PVC) reactors were affected mainly by water temperature. The heterotrophic plate count (HPC) of biofilms was about 100 times higher on steel pipe than other pipes throughout the experiment, with the STS pipe showing the lowest bacterial number at the end of the operation. Analysis of the 16S rDNA sequences of 176 cultivated isolates revealed that 66.5% was Proteobacteria and the others included unclassified bacteria, Actinobacteria, and Bacilli. Regardless of the pipe materials, Sphingomonas was the predominant species in all biofilms. PCR-DGGE analysis showed that steel pipe exhibited the highest bacterial diversity among the metallic pipes, and the DGGE profile of biofilm on PVC showed three additional bands not detected from the profiles of the metallic materials. Environmental scanning electron microscopy showed that corrosion level and biofilm accumulation were the least in the STS coupon. These results suggest that the STS pipe is the best material for plumbing systems in terms of the microbiological aspects of water quality.

Keywords

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipmann. 1990. Basic local alignment tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. APHA, AWWA, WEF. 1998. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, D.C.
  3. Baribeau, H., M. Prevost, R. Desjardins, and P. Lafrance. 2001. Changes in chlorine and DOX concentrations in distribution systems. J. Am. Water Works Assoc. 93: 102-114. https://doi.org/10.1002/j.1551-8833.2001.tb09359.x
  4. Brocca, D., E. Arvin, and H. Mosbæk. 2002. Identification of organic compounds migrating from polyethylene pipelines into drinking water. Water Res. 36: 3676-3680.
  5. Camper, A. K. 1996. Factors limiting microbial growth in distribution systems: Laboratory and pilot-scale experiments. American Water Works Association Research Foundation. Denver, Colorado.
  6. Costerton, J. W., P. S. Stewart, and E. P Greenberg. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284: 1318-1322. https://doi.org/10.1126/science.284.5418.1318
  7. Critchley, M. M. and H. J. Fallowfield. 2001. The effect of distribution systems bacterial biofilms on copper concentrations in drinking water. Water Sci. Technol. Water Supply 1: 247-252.
  8. Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 340-346.
  9. Flemming, H. C. and J. Wingender. 2001. Relevance of microbial extracellular polymeric substances (EPSs) - Part I: Structural and ecological aspects. Water Sci. Technol. 43: 1-8.
  10. Frank, J. F. 2000. Microbial attachment to food and food contact surfaces. Adv. Food Nutr. Res. 43: 319-370.
  11. Gagnon, G. A., K. C. O'Leary, C. J. Volk, C. Chauret, L. Stover, and R. C. Andrews. 2004. Comparative analysis of chlorine dioxide, chlorine and chloramines on bacterial water quality in model distribution systems. J. Environ. Eng. 130: 1269-1279. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:11(1269)
  12. Hallam, N. B., J. R. West, C. F. Forster, J. C. Powell, and I. Spencer. 2002. The decay of chlorine associated with the pipe wall in water distribution systems. Water Res. 36: 3479-3488. https://doi.org/10.1016/S0043-1354(02)00056-8
  13. Hass, C. N., M. Gupta, R. Chitluru, and G. Burlingame. 2002. Chlorine demand in disinfecting water mains. J. Am. Water Works Assoc. 94: 97-102.
  14. Havelaar, H. H., J. F. M. Verstee, and M. During. 1990. The presence of Aeromonas in drinking water supplies in the Netherlands. Zbl. Hyg. 190: 236-256.
  15. Hugenholtz, P., C. Pitulle, K. L. Hershberger, and N. R. Pace. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180: 366-376.
  16. Kalmbach, S., W. Manz, B. Bendinger, and U. Szewzyk. 2000. In situ probing reveals Aquabacterium commune as a widespread and highly abundant bacterial species in drinking water biofilms. Water Res. 34: 575-581. https://doi.org/10.1016/S0043-1354(99)00179-7
  17. Kelly, S. T., U. Theisen, L. T. Angenent, A. S. Amand, and N. R. Pace. 2004. Molecular analysis of shower curtain biofilm microbes. Appl. Environ. Microbiol. 70: 4187-4192. https://doi.org/10.1128/AEM.70.7.4187-4192.2004
  18. Kim, B. R., J. E. Anderson, S. A. Mueller, W. A. Gaines, and A. M. Kendall. 2002. Literature review - efficacy of various disinfectants against Legionella in water systems. Water Res. 36: 4433-4444. https://doi.org/10.1016/S0043-1354(02)00188-4
  19. Kim, T. S., M. S. Kim, M. K. Jung, J. H. Ahn, M. J. Joe, K. H. Oh, M. H. Lee, M. K. Kim, and J. O. Ka. 2005. Analysis of plasmid pJP4 horizontal transfer and its impact on bacterial community structure in natural soil. J. Microbiol. Biotechnol. 15: 376-383.
  20. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-148. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, England.
  21. LeChevallier, M. W., T. M Bobcock, and R. G. Lee. 1987. Examination and characterization of distribution system biofilm. Appl. Environ. Microbiol. 53: 2714-2724.
  22. Lechevallier, M. W., C. D. Lowry, R. G. Lee, and D. L. Gibbon. 1993. Examining the relationship between iron corrosion and the disinfection of biofilm bacteria. J. Am. Water Works Assoc. 85: 111-123. https://doi.org/10.1002/j.1551-8833.1993.tb06031.x
  23. Lehtola, M. J., I. T. Miettinen, A. Hirvonen, T. Vartiainen, and P. J. Martikainen. 2005. Pipeline materials modify the effectiveness of disinfectants in drinking water distribution systems. Water Res. 39: 1962-1971. https://doi.org/10.1016/j.watres.2005.03.009
  24. Lehtola, M. J., I. T. Miettinen, I. T. Keinanen, T. K. Kekki, O. Laine, A. Hirvonen, T. Vartiainen, and P. J Martikainen. 2004. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res. 38: 3769-3779. https://doi.org/10.1016/j.watres.2004.06.024
  25. Liu, W., H. Wu, Z. Wang, S. L. Ong, J. Y. Hu, and W. J. Ng. 2002. Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system. Water Res. 36: 891-898. https://doi.org/10.1016/S0043-1354(01)00296-2
  26. Lyautey, E., B. Lacoste, L. Ten-Hage, J. L. Rols, and F. Garabetian. 2005. Analysis of bacterial diversity in river biofilms using 16S rDNA PCR-DGGE: Methodological settings and fingerprints interpretation. Water Res. 39: 380-388. https://doi.org/10.1016/j.watres.2004.09.025
  27. Muyer, G. 1999. DGGE/TGGE method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2: 317-322. https://doi.org/10.1016/S1369-5274(99)80055-1
  28. Niquette, P., P. Servais, and R. Savoir. 2000. Impacts of pipe materials on densities of fixed bacterial biomass in a drinking water distribution system. Water Res. 34: 1952-1956. https://doi.org/10.1016/S0043-1354(99)00307-3
  29. Norton, C. D. and M. W. LeChevallier. 2000. A pilot study of bacteriological population changes through portable water treatment and distribution. Appl. Environ. Microbiol. 66: 268-276. https://doi.org/10.1128/AEM.66.1.268-276.2000
  30. Norton, C. D., M. W. LeChevallier, and J. O. Falkinham III. 2004. Survival of Mycobacterium avium in a model distribution system. Water Res. 38: 1457-1466. https://doi.org/10.1016/j.watres.2003.07.008
  31. Noyce, J. O., H. Michels, and C. W. Keevil. 2007. Inactivation of influenza A virus on copper versus stainless steel surface. Appl. Environ. Microbiol. 73: 2748-2750. https://doi.org/10.1128/AEM.01139-06
  32. Olson, B. H. 1982. Assessment and implications of bacterial regrowth in water distribution systems. EPA-6001/52-82-072, US EPA, Cincinnati.
  33. Pedersen, K. 1990. Biofilm development on stainless steel and PVC surfaces in drinking water. Water Res. 24: 239-243. https://doi.org/10.1016/0043-1354(90)90109-J
  34. Percival, S. L., J. S. Knapp, R. Edyvean, and D. S. Wales, 1998. Biofilm, mains water and stainless steel. Water Res. 32: 2187-2201. https://doi.org/10.1016/S0043-1354(97)00415-6
  35. Percival, S. L., J. T. Walker, and P. R. Hunter. 2000. Microbiological Aspects of Biofilms and Drinking Water, pp. 61-78. CRC Press.
  36. Rebekka, R. E. A. and K. Killham. 2002. Survival of Escherichia coli O157:H7 in private drinking water wells: Influences of protozoan grazing and elevated copper concentrations. FEMS Microbiol. Lett. 216: 117-122. https://doi.org/10.1111/j.1574-6968.2002.tb11424.x
  37. Ridgway, H. F. and B. H. Olson. 1981. Scanning electron microscope evidence for bacterial colonization of a drinkingwater distribution system. Appl. Environ. Microbiol. 41: 274-287.
  38. Rogers, J., A. B. Dowsett, P. J. Dennis, J. V. Lee, and C. W. Keevil. 1994. Influence of temperature and plumbing material selection on biofilm formation and growth of Legionella pneumophila in a model potable water system containing complex microbial flora. Appl. Environ. Microbiol. 60: 1585-1592.
  39. Schock, M. R. 1990. Internal corrosion and deposition control. In F. W. Pontius (ed.). Water Quality and Treatment, 4th Ed. McGraw-Hill, New York.
  40. Schwartz, T., S. Hoffmann, and U. Obst. 1998. Formation and bacterial composition of young, natural biofilms obtained from public bank-filtered drinking water systems. Water Res. 32: 2787-2797. https://doi.org/10.1016/S0043-1354(98)00026-8
  41. Sharp, P. R., A. K. Camper, J. J. Crippen, O. D. Schneider, and S. Leggiero. 2001. Evaluation of drinking water biostability using biofilm methods. J. Environ. Eng. 127: 403-410. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:5(403)
  42. Snoeyink, V. L. and I. Wagner. 1996. Principles of corrosion of water distribution systems. In: Internal Corrosion of Water Distribution Systems, 2nd Ed. AWWARF and AWWA, Denver, Colo.
  43. Teitzel, G. M. and M. R. Parsek. 2003. Heavy metal resistance of biofilm and planktonic Pseudomonas aerusinosa. Appl. Environ. Microbiol. 69: 2313-2320. https://doi.org/10.1128/AEM.69.4.2313-2320.2003
  44. Van der Kooij, D. 1992. Assimilable organic carbon as an indicator of bacterial growth. J. Am. Water Works Assoc. 84: 57-65. https://doi.org/10.1002/j.1551-8833.1992.tb07305.x
  45. Van der Kooij, D., H. R. Veenendaal, C. Baars-Lorist, D. W. Van der Klift, and Y. C. Drost. 1995. Biofilm formation on surfaces of glass and Teflon exposed to treated water. Water Res. 29: 1655-1662. https://doi.org/10.1016/0043-1354(94)00333-3
  46. Van der Kooij, D., H. R. Veenendaal, and W. J. H. Scheffer. 2005. Biofilm formation and multiplication of Legionella in a model warm water system with pipes of copper, stainless steel and cross-linked polyethylene. Water Res. 39: 2789-2795. https://doi.org/10.1016/j.watres.2005.04.075
  47. Van der Kooij, D., A. Visser, and W. A. M. Hijnen. 1982. Determining the concentration of easily assimilable organic carbon in drinking water. J. Am. Water Works Assoc. 74: 540-545. https://doi.org/10.1002/j.1551-8833.1982.tb05000.x
  48. von Reyn, C. F., R. D. Waddell, T. Eaton, R. D. Arbeit, J. N. Maslow, T. W Barber, et al. 1993. Isolation of Mycobacterium avium complex from water in the United States, Finland, Zaire, and Kenya. J. Clin. Microbiol. 31: 3227-3230.
  49. Zacheus, O. M., E. K. Iivanainen, T. K. Nissinen, M. J. Lehtola, and P. J. Martikainen. 2000. Bacterial biofilm formation on polyvinyl chloride, polyethylene and stainless steel exposed to ozonated water. Water Res. 34: 63-70. https://doi.org/10.1016/S0043-1354(99)00113-X

Cited by

  1. Effects of Phosphate Addition on Biofilm Bacterial Communities and Water Quality in Annular Reactors Equipped with Stainless Steel and Ductile Cast Iron Pipes vol.50, pp.1, 2012, https://doi.org/10.1007/s12275-012-1040-x
  2. Effect of Disinfectant, Water Age, and Pipe Material on Occurrence and Persistence of Legionella, mycobacteria, Pseudomonas aeruginosa, and Two Amoebas vol.46, pp.21, 2011, https://doi.org/10.1021/es303212a
  3. Phylogenetic diversity of microbial communities in real drinking water distribution systems vol.18, pp.1, 2011, https://doi.org/10.1007/s12257-012-0230-z
  4. Presence of metals in drinking water distribution networks due to pipe material leaching: a review vol.95, pp.6, 2011, https://doi.org/10.1080/02772248.2013.840372
  5. Effects of Pipe Materials on Chlorine-resistant Biofilm Formation Under Long-term High Chlorine Level vol.173, pp.6, 2011, https://doi.org/10.1007/s12010-014-0935-x
  6. Effect of Disinfectant, Water Age, and Pipe Materials on Bacterial and Eukaryotic Community Structure in Drinking Water Biofilm vol.48, pp.3, 2011, https://doi.org/10.1021/es402636u
  7. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm vol.48, pp.10, 2014, https://doi.org/10.1021/es5009467
  8. Impact of drinking water conditions and copper materials on downstream biofilm microbial communities and Legionella pneumophila colonization vol.117, pp.3, 2011, https://doi.org/10.1111/jam.12578
  9. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies vol.99, pp.4, 2015, https://doi.org/10.1007/s00253-014-6095-7
  10. Pyrosequencing analysis of bacterial communities in biofilms from different pipe materials in a city drinking water distribution system of East China vol.99, pp.24, 2011, https://doi.org/10.1007/s00253-015-6885-6
  11. Structure and microbial diversity of biofilms on different pipe materials of a model drinking water distribution systems vol.31, pp.1, 2011, https://doi.org/10.1007/s11274-014-1761-6
  12. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing vol.5, pp.None, 2011, https://doi.org/10.1038/srep10044
  13. Distribution System Water Quality Affects Responses of Opportunistic Pathogen Gene Markers in Household Water Heaters vol.49, pp.14, 2011, https://doi.org/10.1021/acs.est.5b01538
  14. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome vol.10, pp.10, 2011, https://doi.org/10.1371/journal.pone.0141087
  15. Archaeal ammonium oxidation coupled with bacterial nitrite oxidation in a simulated drinking water premise plumbing system vol.2, pp.4, 2016, https://doi.org/10.1039/c5ew00273g
  16. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems vol.50, pp.17, 2011, https://doi.org/10.1021/acs.est.6b00835
  17. Monitoring of biofilm aging in a Sphingomonas sp. strain from public drinking water sites through changes in capacitance vol.38, pp.18, 2011, https://doi.org/10.1080/09593330.2016.1260164
  18. Characteristics of biofilm community structure in a reclaimed water cast iron pipeline vol.4, pp.10, 2011, https://doi.org/10.1039/c8ew00240a
  19. Evaluation of biofilm development on various pipelines in the domestic hot water system vol.18, pp.2, 2011, https://doi.org/10.2166/ws.2017.138
  20. Molecular analysis of bacterial community in the tap water with different water ages of a drinking water distribution system vol.12, pp.3, 2011, https://doi.org/10.1007/s11783-018-1020-4
  21. Effects of Chloramine and Coupon Material on Biofilm Abundance and Community Composition in Bench-Scale Simulated Water Distribution Systems and Comparison with Full-Scale Water Mains vol.52, pp.22, 2011, https://doi.org/10.1021/acs.est.8b02607
  22. Drip irrigation biofouling with treated wastewater: bacterial selection revealed by high-throughput sequencing vol.35, pp.2, 2011, https://doi.org/10.1080/08927014.2019.1591377
  23. Testing Anti-Biofilm Polymeric Surfaces: Where to Start? vol.20, pp.15, 2011, https://doi.org/10.3390/ijms20153794
  24. Metagenomics analysis of bacterial structure communities within natural biofilm vol.5, pp.8, 2011, https://doi.org/10.1016/j.heliyon.2019.e02271
  25. Impact of substrate material and chlorine/chloramine on the composition and function of a young biofilm microbial community as revealed by high-throughput 16S rRNA sequencing vol.242, pp.None, 2011, https://doi.org/10.1016/j.chemosphere.2019.125310
  26. Formation and sorption of trihalomethanes from cross-linked polyethylene pipes following chlorinated water exposure vol.6, pp.9, 2020, https://doi.org/10.1039/d0ew00262c
  27. Research on water distribution systems from the past to the future: a bibliometric review vol.10, pp.1, 2011, https://doi.org/10.1080/21622515.2021.1900404
  28. Microbial abundance and community composition in biofilms on in-pipe sensors in a drinking water distribution system vol.766, pp.None, 2011, https://doi.org/10.1016/j.scitotenv.2020.142314
  29. Microbial communities of biofilms developed in a chlorinated drinking water distribution system: A field study of antibiotic resistance and biodiversity vol.774, pp.None, 2011, https://doi.org/10.1016/j.scitotenv.2021.145113
  30. Roles of metal ions in regulating the formation of a drinking water odorant (2,3,6-trichloroanisole) by Sphingomonas ursincola in drinking water vol.776, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2021.146054
  31. Microbial diversity in full-scale water supply systems through sequencing technology: a review vol.11, pp.41, 2021, https://doi.org/10.1039/d1ra03680g
  32. Buckling Behavior of Thin-Walled Stainless-Steel Lining Wrapped in Water-Supply Pipe under Negative Pressure vol.11, pp.15, 2011, https://doi.org/10.3390/app11156781
  33. A surface modified microbial polymer inactivates quorum sensing molecules and incapacitates Sphingomonas paucimobilis biofilm formation in plumbing material vol.1170, pp.1, 2011, https://doi.org/10.1088/1757-899x/1170/1/012001
  34. Water Distribution Systems in Pig Farm Buildings: Critical Elements of Design and Management vol.11, pp.11, 2021, https://doi.org/10.3390/ani11113268
  35. Optimization of Quantitative Analysis of Biofilm Cell from Pipe Materials vol.11, pp.11, 2011, https://doi.org/10.3390/coatings11111286
  36. Vulnerability of municipal solid waste: An emerging threat to aquatic ecosystems vol.287, pp.p3, 2022, https://doi.org/10.1016/j.chemosphere.2021.132223
  37. Impact of pipe material and chlorination on the biofilm structure and microbial communities vol.289, pp.None, 2011, https://doi.org/10.1016/j.chemosphere.2021.133218
  38. Comparison of disinfectants for drinking water: chlorine gas vs. on-site generated chlorine vol.27, pp.1, 2011, https://doi.org/10.4491/eer.2020.543