DOI QR코드

DOI QR Code

A RAPD-PCR Method for the Rapid Detection of Bacillus cereus

  • Lee, Ji-Yeon (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University) ;
  • Kwon, Gun-Hee (Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Jae-Yong (Department of Food Science and Nutrition, Catholic University of Daegu) ;
  • Park, Cheon-Seok (Department of Food Science and Technology, Kyunghee University) ;
  • Kwon, Dae-Young (Food Function Research Division, Korea Food Research Institute) ;
  • Lim, Jin-Kyu (Shool of Applied Bioscience, Kyungpook National University) ;
  • Kim, Jong-Sang (Shool of Applied Bioscience, Kyungpook National University) ;
  • Kim, Jeong-Hwan (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University)
  • Received : 2010.08.25
  • Accepted : 2010.11.17
  • Published : 2011.03.28

Abstract

Distinction of Bacillus cereus from other closely related bacilli is challenging and new efficient methods are continually demanded. From our previous work on RAPD profiles of bacilli, we found a possibility that B. cereus strains could be distinguished from other bacilli. In this work, RAPD-PCR profiles of B. cereus strains were obtained using a 10-mer (S30) as a primer, and a B. cereus specific 0.91-kb band was produced from all tested strains. The RAPD-PCR procedure also successfully detected B. cereus from spiked cheonggukjang when B. cereus cells were present at more than $10^2$/g sample.

Keywords

References

  1. Ankolekar, C., T. Rahmati, and R. G. Labbe, 2009. Detection of toxigenic Bacillus cereus and Bacillus thuringensis spores in US rice. Int. J. Food Microbiol. 128: 460-466. https://doi.org/10.1016/j.ijfoodmicro.2008.10.006
  2. Ehling-Schulz, M., M. Fricker, and S. Scherer. 2004. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 48: 479-487. https://doi.org/10.1002/mnfr.200400055
  3. Fricker, M., U. MesselhauBer, U. Busch, S. Scherer, and M. Ehling-Schulz. 2007. Diagnostic real-time PCR assays for the detection of emetic Bacillus cereus strains in foods and recent food-borne outbreaks. Appl. Environ. Microbiol. 73: 1892-1898. https://doi.org/10.1128/AEM.02219-06
  4. Fricker, M., R. Reissbrodt, and M. Ehling-Schulz. 2008. Evaluation of standard and new chromogenic selective plating media for isolation and identification of Bacillus cereus. Int. J. Food Microbiol. 121: 27-34. https://doi.org/10.1016/j.ijfoodmicro.2007.10.012
  5. Jensen, G. B., B. M. Hansen, J. Ellenberg, and J. Mahillon. 2003. The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 5: 631-640. https://doi.org/10.1046/j.1462-2920.2003.00461.x
  6. Jeong, S.-J., G.-H. Kwon, J. Chun, J. S. Kim, C.-S. Park, D. Y. Kwon, and J. H. Kim. 2007. Cloning of fibrinolytic enzyme gene from Bacillus subtilis isolated from cheonggukjang and its expression in protease-deficient Bacillus subtilis strains. J. Microbiol. Biotechnol. 17: 1018-1023.
  7. Kim, W., K. Choi, Y. Kim, H. Park, J. Choi, Y. Lee, H. Oh, I. Kwon, and S. Lee. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from chungkook-jang. Appl. Environ. Microbiol. 62: 2482-2488.
  8. Kwon, G.-H., H.-A Lee, J.-Y. Park, J. S. Kim, J. Lim, C.-S. Park, D. Y. Kwon, Y.-S. Kim, and J. H. Kim. 2009. Development of a RAPD-PCR method for identification of Bacillus species isolated from cheonggukjang. Int. J. Food Microbiol. 129: 282-287. https://doi.org/10.1016/j.ijfoodmicro.2008.12.013
  9. Luna, V. A., J. Gulledge, A. C. Cannons, and P. T. Amuso. 2009. Improvement of a selective media for the isolation of B. anthracis from soils. J. Microbiol. Methods 79: 301-306. https://doi.org/10.1016/j.mimet.2009.09.023
  10. Martinez, M. A., O. D. Delgado, J. D. Breccia, M. D. Baigori, and F. Sineriz. 2002. Revision of the taxonomic position of the xylanolytic Bacillus sp. MIR32 reidentified as Bacillus halodurans and plasmid-mediated transformation of B. halodurans. Extremophiles 6: 391-395. https://doi.org/10.1007/s00792-002-0269-4
  11. Oliwa-Stasiak, K., C. I. Molnar, K. Arshak, M. Bartoszcze, and C. C. Adley. 2010. Development of a PCR assay for identification of the Bacillus cereus group species. J. Appl. Microbiol. 108: 266-273. https://doi.org/10.1111/j.1365-2672.2009.04419.x
  12. Schoeni, J. L. and A. C. Wong. 2005. Bacillus cereus food poisoning and its toxins. J. Food Prot. 68: 636-648. https://doi.org/10.4315/0362-028X-68.3.636
  13. Stenfors Arnesen, L. P., A. Fagerlund, and P. E. Granum. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579-606. https://doi.org/10.1111/j.1574-6976.2008.00112.x
  14. Torriani, S., G. Zapparoli, and F. Dellaglio. 1999. Use of PCRbased methods for rapid differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. Appl. Environ. Microbiol. 65: 4351-4356.

Cited by

  1. Extensive Host Range Determination and Improved Efficacy of the Bacteriophage JBP901 in the Presence of Divalent Cations for Control of Bacillus cereus in Cheonggukjang vol.23, pp.2, 2011, https://doi.org/10.1007/s10068-014-0068-6
  2. Evaluation of the psychrotrophic specific signatures for cspA gene and 16S rDNA on the phenotype of Bacillus cereus sensu strictu vol.67, pp.1, 2011, https://doi.org/10.1111/1471-0307.12092
  3. Proposal of statistical sampling plans for Bacillus cereus in Korean fermented soybean pastes vol.24, pp.2, 2011, https://doi.org/10.1007/s10068-015-0099-7
  4. Evaluation of zoonotic potency of Escherichia coli O157:H7 through arbitrarily primed PCR methods vol.5, pp.11, 2015, https://doi.org/10.1016/j.apjtb.2015.07.023
  5. Novel identification methods including a species-specific PCR for hazardousBacillusspecies vol.48, pp.4, 2011, https://doi.org/10.1556/066.2019.48.4.2
  6. Two rapid and sensitive methods based on TaqMan qPCR and droplet digital PCR assay for quantitative detection of Bacillus subtilis in rhizosphere vol.128, pp.2, 2011, https://doi.org/10.1111/jam.14481
  7. Effects of the degree of milling on the quality characteristics of rice ‘Nuruk’ vol.27, pp.4, 2020, https://doi.org/10.11002/kjfp.2020.27.4.495
  8. Genetic fingerprint and diversity evaluation of halophilic Bacillus species by RAPD-PCR vol.93, pp.suppl3, 2011, https://doi.org/10.1590/0001-3765202120191430
  9. Characterization of Vegetative Bacillus cereus and Bacillus subtilis Strains Isolated from Processed Cheese Products in an Italian Dairy Plant vol.10, pp.11, 2011, https://doi.org/10.3390/foods10112876
  10. Rapid and selective detection of Bacillus cereus in food using cDNA-based up-conversion fluorescence spectrum copy and aptamer modified magnetic separation vol.267, pp.p2, 2011, https://doi.org/10.1016/j.saa.2021.120618