DOI QR코드

DOI QR Code

Decolorization and Biotransformation of Triphenylmethane Dye, Methyl Violet, by Aspergillus sp. Isolated from Ladakh, India

  • Kumar, C. Ganesh (Chemical Biology Laboratory, Indian Institute of Chemical Technology) ;
  • Mongolla, Poornima (Chemical Biology Laboratory, Indian Institute of Chemical Technology) ;
  • Basha, Anver (Chemical Biology Laboratory, Indian Institute of Chemical Technology) ;
  • Joseph, Joveeta (Chemical Biology Laboratory, Indian Institute of Chemical Technology) ;
  • Sarma, V.U.M. (Natural Products Laboratory, Indian Institute of Chemical Technology) ;
  • Kamal, Ahmed (Chemical Biology Laboratory, Indian Institute of Chemical Technology)
  • 투고 : 2010.11.11
  • 심사 : 2010.12.24
  • 발행 : 2011.03.28

초록

Methyl violet, used extensively in the commercial textile industry and as a biological stain, is a hazardous recalcitrant. Aspergillus sp. strain CB-TKL-1 isolated from a water sample from Tsumoriri Lake, Karzok, Ladakh, India, was found to completely decolorize methyl violet within 24 h when cultured under aerobic conditions at $25^{\circ}C$. The rate of decolorization was determined by monitoring the decrease in the absorbance maxima of the dye by UV-visible spectroscopy. The decolorization of methyl violet was optimal at pH 5.5 and $30^{\circ}C$ when agitated at 200 rpm. Addition of glucose or arabinose (2%) as a carbon source and sodium nitrate or soyapeptone (0.2%) as a nitrogen source enhanced the decolorization ability of the culture. Furthermore, the culture exhibited a maximum decolorization rate of methyl violet after 24 h when the C:N ratio was 10. Nine N-demethylated decolorized products of methyl violet were identified based on UV-visible spectroscopy, Fourier transform infrared (FTIR), and LC-MS analyses. The decolorization of methyl violet at the end of 24 h generated mono-, di-, tri-, tetra-, penta-, and hexa-N-demethylated intermediates of pararosaniline. The variation of the relative absorption peaks in the decolorized sample indicated a linear decrease of hexa-N-demethylated compounds to non-N-demethylated pararosaniline, indicating a stepwise N-demethylation in the decolorization process.

키워드

참고문헌

  1. Ali, H., W. Ahmad, and T. Haq. 2009. Decolorization and degradation of malachite green by Aspergillus flavus and Alternaria solani. African J. Biotechnol. 8: 1574-1576.
  2. Ali, N., A. Hameed, S. Ahmed, and A. G. Khan. 2008. Decolorization of structurally different textile dyes by Aspergillus niger SA1. World J. Microbiol. Biotechnol. 24: 1067-1072. https://doi.org/10.1007/s11274-007-9577-2
  3. Asad, S., M. A. Anoozegar, A. A. Pourbabaee, M. N. Sarbolouki, and S. M. Dastgheib. 2007. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour. Technol. 98: 2082-2088. https://doi.org/10.1016/j.biortech.2006.08.020
  4. Azmi, W., R. K. Sani, and U. C. Banerjee. 1998. Biodegradation of triphenylmethane dyes. Enzyme Microb. Technol. 22: 185-191. https://doi.org/10.1016/S0141-0229(97)00159-2
  5. Bumpus, J. A. and B. J. Brock. 1988. Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54: 1143-1150.
  6. Casas, N., T. Parella, T. Vicent, G. Caminal, and M. Sarra. 2009. Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase. Chemosphere 75: 1344-1349. https://doi.org/10.1016/j.chemosphere.2009.02.029
  7. Cha, C.-J., D. R. Doerge, and C. E. Cerniglia. 2001. Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl. Environ. Microbiol. 67: 4358-4360. https://doi.org/10.1128/AEM.67.9.4358-4360.2001
  8. Chen, C. C., W. Zhao, J. G. Li, J. C. Zhao, H. Hidaka, and N. Serpone. 2002. Formation and identification of intermediates in the visible-light-assisted photodegradation of sulforhodamine-B dye in aqueous $TiO_{2}$ dispersion. Environ. Sci. Technol. 36: 3604-3611. https://doi.org/10.1021/es0205434
  9. Cheriaa, J. and A. Bakhrouf. 2009. Triphenylmethanes, malachite green and crystal violet dyes decolourisation by Sphingomonas paucimobilis. Ann. Microbiol. 59: 57-61. https://doi.org/10.1007/BF03175599
  10. Diachenko, G. W. 1979. Determination of several industrial aromatic amines in fish. Environ. Sci. Technol. 13: 329-333. https://doi.org/10.1021/es60151a003
  11. El-Naggar, M. A., S. A. El-Aasar, and K. I. Barakat. 2004. Bioremediation of crystal violet using air bubble bioreactor packed with Pseudomonas aeruginosa. Water Res. 38: 4313-4322. https://doi.org/10.1016/j.watres.2004.06.034
  12. Fu, Y. and T. Viraraghavan. 2001. Fungal decolorization of dye wastewaters: A review. Bioresour. Technol. 79: 251-262. https://doi.org/10.1016/S0960-8524(01)00028-1
  13. Jain, N., A. Kaur, D. Singh, and S. Dahiya. 2000. Degradation of acrylic red 2 B dye by Phanerochaete chrysosporium: Involvement of carbon and nitrogen source. J. Environ. Biol. 21: 179-183.
  14. Jeong, M.-S., W.-D. Ji, B.-H. Kim, and Y.-G. Chung. 1998. Decolorizing characteristics of crystal violet by Enterobacter cloace MG82. Korean J. Appl. Microbiol. Biotechnol. 26: 269-273.
  15. Kim, J.-D., J.-H. Yoon, Y.-H. Park, F. Kawai, H.-T. Kim, D.-W. Lee, and K.-H. Kang. 2002. Identification of Stenotrophomonas maltophila LK-24 and its degradability of crystal violet. J. Microbiol. Biotechnol. 12: 437-443.
  16. Kwasniewska, K. 1985. Biodegradation of crystal violet (hexamethylp- rosaniline chloride) by oxidative red yeasts. Bull. Environ. Contam. Toxicol. 34: 323-330. https://doi.org/10.1007/BF01609742
  17. Michaels, G. B. and D. L. Lewis. 1985. Sorption and toxicity of azo and triphenylmethane dyes to aquatic microbial populations. Environ. Toxicol. Chem. 4: 45-50. https://doi.org/10.1002/etc.5620040107
  18. Michaels, G. B. and D. L. Lewis. 1986. Microbial transformation rates of azo and triphenylmethane dyes. Environ. Toxicol. Chem. 5: 161-166. https://doi.org/10.1002/etc.5620050206
  19. Nelson, C. R. and R. A. Hites. 1980. Aromatic amines in and near the Buffalo River. Environ. Sci. Technol. 14: 1147-1149. https://doi.org/10.1021/es60169a020
  20. Parshetti, G., G. Saratale, A. Telke, and S. Govindwar. 2009. Biodegradation of hazardous triphenylmethane dye, methyl violet, by Rhizobium radiobacter (MTCC 8161). J. Basic Microbiol. 49: S36-S42. https://doi.org/10.1002/jobm.200800200
  21. Ramya, M., B. Anusha, S. Kalavathy, and S. Devilakshmi. 2007. Biodecolorization and biodegradation of Reactive Blue by Aspergillus spp. African J. Biotechnol. 6: 1441-1445.
  22. Sani, R. K. and U. C. Banerjee. 1999. Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzyme Microb. Technol. 24: 433-437. https://doi.org/10.1016/S0141-0229(98)00159-8
  23. Sarnaik, S. and P. Kanekar. 1999. Biodegradation of methyl violet by Pseudomonas mendocina MCM B-402. Appl. Microbiol. Biotechnol. 52: 251-254. https://doi.org/10.1007/s002530051517
  24. Selvam, K., K. Swaminathan, and K.-S. Chae. 2003. Decolorization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp. Bioresour. Technol. 88: 115-119. https://doi.org/10.1016/S0960-8524(02)00280-8
  25. Swamy, J. and J. A. Ramsay. 1999. The evaluation of white rot fungi in the decoloration of textile dyes. Enzyme Microb. Technol. 24: 130-137. https://doi.org/10.1016/S0141-0229(98)00105-7
  26. Vasdev, K., R. C. Kuhad, and R. K. Saxena. 1995. Decolorization of triphenylmethane dyes by bird's nest fungus Cyathus bulleri. Curr. Microbiol. 30: 269-272. https://doi.org/10.1007/BF00295500
  27. Wu, T., G. Liu, J. Zhao, H. Hidaka, and N. Serpone. 1988. Photoassisted degradation of dye pollutants. V. Self photooxidative transformation of rhodamine B under visible light irradiation in aqueous $TiO_{2}$ dispersions. J. Phys. Chem. B 102: 5845-5851.
  28. Yatome, C., T. Ogawa, and M. Matsui. 1991. Degradation of crystal violet by Bacillus subtilis. J. Environ. Sci. Health A 26: 75-87. https://doi.org/10.1080/10934529109375621
  29. Yatome, C., S. Yamada, T. Ogawa, and M. Matsui. 1993. Degradation of crystal violet by Nocardia corallina. Appl. Microbiol. Biotechnol. 38: 565-569.

피인용 문헌

  1. Influence of Nonionic Surfactant on Alkaline Hydrolysis of Methyl Violet Catalyzed by Cetyltrimethylammonium Bromide vol.33, pp.7, 2011, https://doi.org/10.1080/01932691.2011.599217
  2. Metabolic Profiling and Biological Activities of Bioactive Compounds Produced by Pseudomonas sp. Strain ICTB-745 Isolated from Ladakh, India vol.22, pp.1, 2011, https://doi.org/10.4014/jmb.1105.05008
  3. Bioremoval of an azo textile dye, Reactive Red 198, by Aspergillus flavus vol.28, pp.3, 2011, https://doi.org/10.1007/s11274-011-0913-1
  4. Decolorization and biodegradation of triphenylmethane dyes by a novel Rhodococcus qingshengii JB301 isolated from sawdust vol.64, pp.4, 2014, https://doi.org/10.1007/s13213-014-0801-7
  5. Novel Exploration of Endophytic Diaporthe sp. for the Biosorption and Biodegradation of Triphenylmethane Dyes vol.227, pp.4, 2011, https://doi.org/10.1007/s11270-016-2810-6
  6. Microbial decolorization and degradation of crystal violet dye by Aspergillus niger vol.13, pp.12, 2011, https://doi.org/10.1007/s13762-016-1117-x
  7. Purification and characterization of extracellular laccase produced by Ceriporiopsis subvermispora and decolorization of triphenylmethane dyes vol.56, pp.11, 2011, https://doi.org/10.1002/jobm.201600152
  8. Biodegradation of Malachite Green by the Ligninolytic FungusAspergillus flavus : General vol.45, pp.4, 2017, https://doi.org/10.1002/clen.201600045
  9. Phenazine-1-carboxamide, an Extrolite Produced by Pseudomonas aeruginosa Strain (CGK-KS-1) Isolated from Ladakh and India, and its Evaluation Against Various Xanthomonas spp. vol.45, pp.3, 2011, https://doi.org/10.4014/mbl.1704.04004
  10. Congo Red Decolorization and Detoxification by Aspergillus niger : Removal Mechanisms and Dye Degradation Pathway vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/3049686
  11. Biodegradation of Triphenylmethane Dyes by Non-white Rot Fungus Penicillium simplicissimum: Enzymatic and Toxicity Studies vol.13, pp.2, 2011, https://doi.org/10.1007/s41742-019-00171-2
  12. Sonochemical-assisted route for synthesis of spherical shaped holmium vanadate nanocatalyst for polluted waste water treatment vol.58, pp.None, 2011, https://doi.org/10.1016/j.ultsonch.2019.104686
  13. Removal of triphenylmethane dyes in single-dye and dye-metal mixtures by live and dead cells of metal-tolerant Penicillium simplicissimum vol.55, pp.13, 2011, https://doi.org/10.1080/01496395.2019.1626422