참고문헌
- Abee, T. 1995. Pore-forming bacteriocins of Gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol. Lett. 129: 1-10. https://doi.org/10.1111/j.1574-6968.1995.tb07548.x
- Ahern, M., S. Verschueren, and D. van Sinderen. 2003. Isolation and characterization of a novel bacteriocin produced by Bacillus thuringiensis strain B439. FEMS Microbiol. Lett. 220: 127-131. https://doi.org/10.1016/S0378-1097(03)00086-7
- Babasaki, K., T. Takao, Y. Shimonishi, and K. Kurahashi. 1985. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: Isolation, structural analysis, and biogenesis. J. Biochem. (Tokyo) 98: 585-603. https://doi.org/10.1093/oxfordjournals.jbchem.a135315
- Banerjee, S. and J. N. Hansen. 1988. Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J. Biol. Chem. 263: 9508-9514.
- Breukink, E., I. Wiedemann, C. van Kraaij, O. P. Kuipers, H. Sahl, and B. de Kruijff. 1999. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286: 2361-2364. https://doi.org/10.1126/science.286.5448.2361
- Chehimi, S., F. Delalande, S. Sable, M. R. Hajlaoui, A. Van Dorsselaer, F. Limam, and A. M. Pons. 2007. Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from Bacillus thuringiensis. Can. J. Microbiol. 53: 284-290. https://doi.org/10.1139/w06-116
- Cherif, A., S. Chehimi, F. Limem, B. M. Hansen, N. B. Hendriksen, D. Daffonchio, and A. Boudabous. 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. J. Appl. Microbiol. 95: 990-1000. https://doi.org/10.1046/j.1365-2672.2003.02089.x
- Cherif, A., H. Ouzari, D. Daffonchio, H. Cherif, K. Ben Slama, A. Hassen, S. Jaoua, and A. Boudabous. 2001. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol. 32: 243-247. https://doi.org/10.1046/j.1472-765X.2001.00898.x
- Chung, Y. J. and J. N. Hansen. 1992. Determination of the sequence of spaE and identification of a promoter in the subtilin (spa) operon in Bacillus subtilis. J. Bacteriol. 174: 6699-6702. https://doi.org/10.1128/jb.174.20.6699-6702.1992
- Corvey, C., T. Stein, S. Dusterhus, M. Karas, and K. D. Entian. 2003. Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE), WprA, and Vpr. Biochem. Biophys. Res. Commun. 304: 48-54. https://doi.org/10.1016/S0006-291X(03)00529-1
- Delves-Broughton, J. 2005. Nisin as a food preservative. Food Aust. 57: 525-527.
- Duquesne, S., D. Destoumieux-Garzon, J. Peduzzi, and S. Rebuffat. 2007. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat. Prod. Rep. 24: 708-734. https://doi.org/10.1039/b516237h
- Duquesne, S., V. Petit, J. Peduzzi, and S. Rebuffat. 2007. Structural and functional diversity of microcins, gene-encoded antibacterial peptides from enterobacteria. J. Mol. Microbiol Biotechnol 13: 200-209. https://doi.org/10.1159/000104748
- Entian, K.-D. and W. M. de Vos. 1996. Genetics of subtilin and nisin biosyntheses. Antonie Van Leeuwenhoek 69: 109-117. https://doi.org/10.1007/BF00399416
- Garcia-Olmedo, F., A. Molina, J. M. Alamillo, and P. Rodriguez-Palenzuela. 1998. Plant defense peptides. Biopolymers 47: 479-491. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<479::AID-BIP6>3.0.CO;2-K
- Gillor, O., L. M. Nigro, and M. A. Riley. 2005. Genetically engineered bacteriocins and their potential as the next generation of antimicrobials. Curr. Pharm. Des. 11: 1067-1075. https://doi.org/10.2174/1381612053381666
- Guder, A., I. Wiedemann, and H. G. Sahl. 2000. Posttranslationally modified bacteriocins - the lantibiotics. Biopolymers 55: 62-73. https://doi.org/10.1002/1097-0282(2000)55:1<62::AID-BIP60>3.0.CO;2-Y
- Gutowski-Eckel, Z., C. Klein, K. Siegers, K. Bohm, M. Hammelmann, and K. D. Entian. 1994. Growth phase-dependent regulation and membrane localization of SpaB, a protein involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol. 60: 1-11.
- Hechard, Y. and H. G. Sahl. 2002. Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84: 545-557. https://doi.org/10.1016/S0300-9084(02)01417-7
- Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171-200.
- Kim, T. W., Y. H. Kim, S. E. Kim, J. H. Lee, C. S. Park, and H. Y. Kim. 2010. Identification and distribution of Bacillus species in doenjang by whole-cell protein patterns and 16S rRNA gene sequence analysis. J. Microbiol. Biotechnol. 20: 1210-1214. https://doi.org/10.4014/jmb.1002.02008
- Kim, T. W., J. H. Lee, S. E. Kim, M. H. Park, H. C. Chang, and H. Y. Kim. 2009. Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR - denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 131: 265-271. https://doi.org/10.1016/j.ijfoodmicro.2009.03.001
- Kim, T. W., J. H. Lee, M. H. Park, and H. Y. Kim. Analysis of bacterial and fungal communities in Japanese- and Chinese-fermented soybean pastes using nested PCR-DGGE. Curr. Microbiol. 60: 315-320.
- Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-85.
- Kleerebezem, M., R. Bongers, G. Rutten, W. M. de Vos, and O. P. Kuipers. 2004. Autoregulation of subtilin biosynthesis in Bacillus subtilis: The role of the spa-box in subtilin-responsive promoters. Peptides 25: 1415-1424. https://doi.org/10.1016/j.peptides.2003.11.025
- Kleerebezem, M. and L. E. Quadri. 2001. Peptide pheromonedependent regulation of antimicrobial peptide production in Gram-positive bacteria: A case of multicellular behavior. Peptides 22: 1579-1596. https://doi.org/10.1016/S0196-9781(01)00493-4
- Kleerebezem, M., L. E. Quadri, O. P. Kuipers, and W. M. de Vos. 1997. Quorum sensing by peptide pheromones and twocomponent signal-transduction systems in Gram-positive bacteria. Mol. Microbiol. 24: 895-904. https://doi.org/10.1046/j.1365-2958.1997.4251782.x
- Klein, C. and K. D. Entian. 1994. Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633. Appl. Environ. Microbiol. 60: 2793-2801.
- Klein, C., C. Kaletta, N. Schnell, and K. D. Entian. 1992. Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol. 58: 132-142.
- Le Marrec, C., B. Hyronimus, P. Bressollier, B. Verneuil, and M. C. Urdaci. 2000. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4). Appl. Environ. Microbiol. 66: 5213-5220. https://doi.org/10.1128/AEM.66.12.5213-5220.2000
- Lee, H., J. J. Churey, and R. W. Worobo. 2008. Purification and structural characterization of bacillomycin F produced by a bacterial honey isolate active against Byssochlamys fulva H25. J. Appl. Microbiol. 105: 663-673. https://doi.org/10.1111/j.1365-2672.2008.03797.x
- Lee, H., J. J. Churey, and R. W. Worobo. 2009. Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol. Lett. 299: 205-213. https://doi.org/10.1111/j.1574-6968.2009.01749.x
- Lee, H., J. J. Churey, and R. W. Worobo. 2009. Isolation and characterization of a protective bacterial culture isolated from honey active against American Foulbrood disease. FEMS Microbiol. Lett. 296: 39-44. https://doi.org/10.1111/j.1574-6968.2009.01615.x
- Lee, J. H., T. W. Kim, H. Lee, H. Chang, and H. Y. Kim. 2010. Determination of microbial diversity in meju, fermented cooked soya beans, using nested PCR-denaturing gradient gel electrophoresis. Lett. Appl. Microbiol. 51: 388-394. https://doi.org/10.1111/j.1472-765X.2010.02906.x
- Lehrer, R. I. and T. Ganz. 1999. Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol. 11: 23-27. https://doi.org/10.1016/S0952-7915(99)80005-3
- Maget-Dana, R. and F. Peypoux. 1994. Iturins, a special class of pore-forming lipopeptides: Biological and physicochemical properties. Toxicology 87: 151-174. https://doi.org/10.1016/0300-483X(94)90159-7
- Martin, N. I., H. Hu, M. M. Moake, J. J. Churey, R. Whittal, R. W. Worobo, and J. C. Vederas. 2003. Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J. Biol. Chem. 278: 13124-13132. https://doi.org/10.1074/jbc.M212364200
- McAuliffe, O., R. P. Ross, and C. Hill. 2001. Lantibiotics: Structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 25: 285-308. https://doi.org/10.1111/j.1574-6976.2001.tb00579.x
- Moyne, A. L., R. Shelby, T. E. Cleveland, and S. Tuzun. 2001. Bacillomycin D: An iturin with antifungal activity against Aspergillus flavus. J. Appl. Microbiol. 90: 622-629. https://doi.org/10.1046/j.1365-2672.2001.01290.x
- Naclerio, G., E. Ricca, M. Sacco, and M. De Felice. 1993. Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus. Appl. Environ. Microbiol. 59: 4313-4316.
- Nakano, M. M., G. Zheng, and P. Zuber. 2000. Dual control of sbo-alb operon expression by the Spo0 and ResDE systems of signal transduction under anaerobic conditions in Bacillus subtilis. J. Bacteriol. 182: 3274-3277. https://doi.org/10.1128/JB.182.11.3274-3277.2000
- Nes, I. F., D. B. Diep, L. S. Havarstein, M. B. Brurberg, V. Eijsink, and H. Holo. 1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70: 113-128. https://doi.org/10.1007/BF00395929
- Nissen-Meyer, J. and I. F. Nes. 1997. Ribosomally synthesized antimicrobial peptides: Their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 167: 67-77. https://doi.org/10.1007/s002030050418
- Oscariz, J. C., L. Cintas, H. Holo, I. Lasa, I. F. Nes, and A. G. Pisabarro. 2006. Purification and sequencing of cerein 7B, a novel bacteriocin produced by Bacillus cereus Bc7. FEMS Microbiol. Lett. 254: 108-115. https://doi.org/10.1111/j.1574-6968.2005.00009.x
- Oscariz, J. C., I. Lasa, and A. G. Pisabarro. 1999. Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiol. Lett. 178: 337-341. https://doi.org/10.1111/j.1574-6968.1999.tb08696.x
- Paik, H. D., S. S. Bae, S. H. Park, and J. G. Pan. 1997. Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp. tochigiensis. J. Ind. Microbiol. Biotechnol. 19: 294-298. https://doi.org/10.1038/sj.jim.2900462
- Papagianni, M. 2003. Ribosomally synthesized peptides with antimicrobial properties: Biosynthesis, structure, function, and applications. Biotechnol. Adv. 21: 465-499. https://doi.org/10.1016/S0734-9750(03)00077-6
- Parisot, J., S. Carey, E. Breukink, W. C. Chan, A. Narbad, and B. Bonev. 2008. Molecular mechanism of target recognition by subtilin, a class I lanthionine antibiotic. Antimicrob. Agents Chemother. 52: 612-618. https://doi.org/10.1128/AAC.00836-07
- Ross, R. P., S. Morgan, and C. Hill. 2002. Preservation and fermentation: Past, present and future. Int. J. Food Microbiol. 79: 3-16. https://doi.org/10.1016/S0168-1605(02)00174-5
- Sebei, S., T. Zendo, A. Boudabous, J. Nakayama, and K. Sonomoto. 2007. Characterization, N-terminal sequencing and classification of cerein MRX1, a novel bacteriocin purified from a newly isolated bacterium: Bacillus cereus MRX1. J. Appl. Microbiol. 103: 1621-1631. https://doi.org/10.1111/j.1365-2672.2007.03395.x
- Severinov, K., E. Semenova, A. Kazakov, T. Kazakov, and M. S. Gelfand. 2007. Low-molecular-weight post-translationally modified microcins. Mol. Microbiol. 65: 1380-1394. https://doi.org/10.1111/j.1365-2958.2007.05874.x
- Shai, Y. 2002. Mode of action of membrane active antimicrobial peptides. Biopolymers 66: 236-248. https://doi.org/10.1002/bip.10260
- Siegers, K., S. Heinzmann, and K. D. Entian. 1996. Biosynthesis of lantibiotic nisin. Posttranslational modification of its prepeptide occurs at a multimeric membrane-associated lanthionine synthetase complex. J. Biol. Chem. 271: 12294-12301. https://doi.org/10.1074/jbc.271.21.12294
- Siezen, R. J., O. P. Kuipers, and W. M. de Vos. 1996. Comparison of lantibiotic gene clusters and encoded proteins. Antonie Van Leeuwenhoek 69: 171-184. https://doi.org/10.1007/BF00399422
- Stein, T. 2005. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
- Stein, T., S. Borchert, P. Kiesau, S. Heinzmann, S. Kloss, C. Klein, M. Helfrich, and K. D. Entian. 2002. Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Mol. Microbiol. 44: 403-416. https://doi.org/10.1046/j.1365-2958.2002.02869.x
- Stein, T., S. Heinzmann, S. Dusterhus, S. Borchert, and K. D. Entian. 2005. Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO1099. J. Bacteriol. 187: 822-828. https://doi.org/10.1128/JB.187.3.822-828.2005
- Stein, T., S. Heinzmann, P. Kiesau, B. Himmel, and K. D. Entian. 2003. The spa-box for transcriptional activation of subtilin biosynthesis and immunity in Bacillus subtilis. Mol. Microbiol. 47: 1627-1636. https://doi.org/10.1046/j.1365-2958.2003.03374.x
- Storm, D. R., K. S. Rosenthal, and P. E. Swanson. 1977. Polymyxin and related peptide antibiotics. Annu. Rev. Biochem. 46: 723-763. https://doi.org/10.1146/annurev.bi.46.070177.003451
- Thomson, J. M. and R. A. Bonomo. 2005. The threat of antibiotic resistance in Gram-negative pathogenic bacteria: Betalactams in peril! Curr. Opin. Microbiol. 8: 518-524. https://doi.org/10.1016/j.mib.2005.08.014
- Tossi, A., L. Sandri, and A. Giangaspero. 2000. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55: 4-30. https://doi.org/10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M
- Twomey, D., R. P. Ross, M. Ryan, B. Meaney, and C. Hill. 2002. Lantibiotics produced by lactic acid bacteria: Structure, function and applications. Antonie Van Leeuwenhoek 82: 165-185. https://doi.org/10.1023/A:1020660321724
- Walsh, C. 2003. Section II: Validated targets and major antibiotic classes. In: Antibiotiotics: Actions, Origins, Resistance. ASM Press.
- Yeaman, M. R. and N. Y. Yount. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55: 27-55. https://doi.org/10.1124/pr.55.1.2
- Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395. https://doi.org/10.1038/415389a
- Zheng, G., L. Z. Yan, J. C. Vederas, and P. Zuber. 1999. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J. Bacteriol. 181: 7346-7355.
피인용 문헌
- Recent derivatives from smaller classes of fermentation-derived antibacterials vol.22, pp.1, 2011, https://doi.org/10.1517/13543776.2012.642370
- Classification of Bacillus Beneficial Substances Related to Plants, Humans and Animals vol.22, pp.12, 2011, https://doi.org/10.4014/jmb.1204.04013
- Antibacterial Peptides “Bacteriocins”: An Overview of Their Diverse Characteristics and Applications vol.17, pp.1, 2011, https://doi.org/10.4265/bio.17.1
- Assessment of the Bacteriocinogenic Potential of Marine Bacteria Reveals Lichenicidin Production by Seaweed-Derived Bacillus spp. vol.10, pp.12, 2011, https://doi.org/10.3390/md10102280
- Peptides as the next generation of anti-infectives vol.5, pp.3, 2011, https://doi.org/10.4155/fmc.12.213
- Investigation of the Antimicrobial Activity of Bacillus licheniformis Strains Isolated from Retail Powdered Infant Milk Formulae vol.6, pp.1, 2014, https://doi.org/10.1007/s12602-013-9151-1
- A new biofilm-associated colicin with increased efficiency against biofilm bacteria vol.8, pp.6, 2011, https://doi.org/10.1038/ismej.2013.238
- Bacterial Community of Koumiss from Mongolia Investigated by Culture and Culture-Independent Methods vol.28, pp.4, 2011, https://doi.org/10.1080/08905436.2014.964253
- Antibiotic alternatives: the substitution of antibiotics in animal husbandry? vol.5, pp.None, 2011, https://doi.org/10.3389/fmicb.2014.00217
- Sil: A Streptococcus iniae Bacteriocin with Dual Role as an Antimicrobial and an Immunomodulator That Inhibits Innate Immune Response and Promotes S. iniae Infection vol.9, pp.4, 2014, https://doi.org/10.1371/journal.pone.0096222
- Alternatives to Antibiotics to Prevent Necrotic Enteritis in Broiler Chickens: A Microbiologist's Perspective vol.6, pp.None, 2011, https://doi.org/10.3389/fmicb.2015.01336
- Bacillus amyloliquefaciens AG1 biosurfactant: Putative receptor diversity and histopathological effects on Tuta absoluta midgut vol.132, pp.None, 2011, https://doi.org/10.1016/j.jip.2015.08.010
- Bacteriocins: Novel Solutions to Age Old Spore-Related Problems? vol.7, pp.None, 2011, https://doi.org/10.3389/fmicb.2016.00461
- Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species vol.17, pp.None, 2016, https://doi.org/10.1186/s12864-016-3224-y
- Evaluation of the toxicity and pathogenicity of biocontrol agents in murine models, chicken embryos and dermal irritation in rabbits vol.6, pp.2, 2011, https://doi.org/10.1039/c6tx00275g
- Diversity of Marine Bacteria and Their Bacteriocins: Applications in Aquaculture vol.25, pp.4, 2017, https://doi.org/10.1080/23308249.2017.1282417
- Isolation and Characterization of Bacteria Colonizing Acartia tonsa Copepod Eggs and Displaying Antagonist Effects against Vibrio anguillarum , Vibrio alginolyticus and Other Pathogenic Strains vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.01919
- 왕우럭(Tresus keenae)에서 분리된 Bacillus species의 고분자 유기물질 분해능력과 항균활성 vol.40, pp.4, 2011, https://doi.org/10.7853/kjvs.2017.40.4.265
- Class III bacteriocin Helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane vol.45, pp.3, 2018, https://doi.org/10.1007/s10295-018-2008-6
- Bacillus spp. as direct-fed microbial antibiotic alternatives to enhance growth, immunity, and gut health in poultry vol.47, pp.4, 2011, https://doi.org/10.1080/03079457.2018.1464117
- In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters vol.19, pp.None, 2011, https://doi.org/10.1186/s12864-018-4796-5
- Response of Gut Microbiota to Dietary Fiber and Metabolic Interaction With SCFAs in Piglets vol.9, pp.None, 2011, https://doi.org/10.3389/fmicb.2018.02344
- The Bacteriocinogenic Potential of Marine Microorganisms vol.44, pp.6, 2011, https://doi.org/10.1134/s1063074018060020
- Preservation of Meat Products with Bacteriocins Produced by Lactic Acid Bacteria Isolated from Meat vol.2019, pp.None, 2011, https://doi.org/10.1155/2019/4726510
- Bacteria Hunt Bacteria through an Intriguing Cyclic Peptide vol.14, pp.1, 2011, https://doi.org/10.1002/cmdc.201800597
- Staphylococcus aureus Colonization of the Human Nose and Interaction with Other Microbiome Members vol.7, pp.2, 2011, https://doi.org/10.1128/microbiolspec.gpp3-0029-2018
- Seeds, fermented foods, and agricultural by-products as sources of plant-derived antibacterial peptides vol.59, pp.suppl1, 2011, https://doi.org/10.1080/10408398.2018.1561418
- Genusbacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish vol.27, pp.3, 2011, https://doi.org/10.1080/23308249.2019.1597010
- Microbial metabolomics: essential definitions and the importance of cultivation conditions for utilizing Bacillus species as bionematicides vol.127, pp.2, 2011, https://doi.org/10.1111/jam.14218
- Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6 vol.19, pp.None, 2019, https://doi.org/10.1186/s12866-018-1380-8
- Bacteriotherapy in Breast Cancer vol.20, pp.23, 2011, https://doi.org/10.3390/ijms20235880
- Antibacterial Activity of Lactic Acid Bacteria to Improve Shelf Life of Raw Meat vol.24, pp.4, 2011, https://doi.org/10.4265/bio.24.185
- Bacterial Natural Compounds with Anti-Inflammatory and Immunomodulatory Properties (Mini Review) vol.14, pp.None, 2011, https://doi.org/10.2147/dddt.s261283
- Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides vol.104, pp.3, 2011, https://doi.org/10.1007/s00253-019-10300-8
- Complete reutilisation of mixed mackerel and brown seaweed wastewater as a high-quality biofertiliser in open-flow lettuce hydroponics vol.247, pp.None, 2011, https://doi.org/10.1016/j.jclepro.2019.119081
- Pressure and Temperature Combined With Microbial Supernatant Effectively Inactivate Bacillus subtilis Spores vol.12, pp.None, 2011, https://doi.org/10.3389/fmicb.2021.642501
- Bacteriocinogenic Bacillus spp. Isolated from Korean Fermented Cabbage (Kimchi)-Beneficial or Hazardous? vol.7, pp.2, 2011, https://doi.org/10.3390/fermentation7020056
- A Review of the Effects and Production of Spore-Forming Probiotics for Poultry vol.11, pp.7, 2011, https://doi.org/10.3390/ani11071941
- Looking into key bacterial proteins involved in gut dysbiosis vol.11, pp.4, 2011, https://doi.org/10.5662/wjm.v11.i4.130
- Biopreservative application of bacteriocins obtained from samples Ictalurus punctatus and fermented Zea mays vol.15, pp.8, 2011, https://doi.org/10.5897/ajmr2017.8443