DOI QR코드

DOI QR Code

Lantibiotics, Class I Bacteriocins from the Genus Bacillus

  • Lee, Hyung-Jae (Institute of Life Sciences and Resources, and Graduate School of Biotechnology, Kyung Hee University) ;
  • Kim, Hae-Yeong (Institute of Life Sciences and Resources, and Graduate School of Biotechnology, Kyung Hee University)
  • 투고 : 2010.10.11
  • 심사 : 2010.12.27
  • 발행 : 2011.03.28

초록

Antimicrobial peptides exhibit high levels of antimicrobial activity against a broad range of spoilage and pathogenic microorganisms. Compared with bacteriocins produced by lactic acid bacteria, antimicrobial peptides from the genus Bacillus have been relatively less recognized despite their broad antimicrobial spectra. These peptides can be classified into two different groups based on whether they are ribosomally (bacteriocins) or nonribosomally (polymyxins and iturins) synthesized. Because of their broad spectra and high activity, antimicrobial peptides from Bacillus spp. may have great potential for applications in the food, agricultural, and pharmaceutical industries to prevent or control spoilage and pathogenic microorganisms. In this review, we introduce ribosomally synthesized antimicrobial peptides, the lantibiotic bacteriocins produced by members of Bacillus. In addition, the biosynthesis, genetic organization, mode of action, and regulation of subtilin, a well-investigated lantibiotic from Bacillus subtilis, are discussed.

키워드

참고문헌

  1. Abee, T. 1995. Pore-forming bacteriocins of Gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol. Lett. 129: 1-10. https://doi.org/10.1111/j.1574-6968.1995.tb07548.x
  2. Ahern, M., S. Verschueren, and D. van Sinderen. 2003. Isolation and characterization of a novel bacteriocin produced by Bacillus thuringiensis strain B439. FEMS Microbiol. Lett. 220: 127-131. https://doi.org/10.1016/S0378-1097(03)00086-7
  3. Babasaki, K., T. Takao, Y. Shimonishi, and K. Kurahashi. 1985. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: Isolation, structural analysis, and biogenesis. J. Biochem. (Tokyo) 98: 585-603. https://doi.org/10.1093/oxfordjournals.jbchem.a135315
  4. Banerjee, S. and J. N. Hansen. 1988. Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J. Biol. Chem. 263: 9508-9514.
  5. Breukink, E., I. Wiedemann, C. van Kraaij, O. P. Kuipers, H. Sahl, and B. de Kruijff. 1999. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286: 2361-2364. https://doi.org/10.1126/science.286.5448.2361
  6. Chehimi, S., F. Delalande, S. Sable, M. R. Hajlaoui, A. Van Dorsselaer, F. Limam, and A. M. Pons. 2007. Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from Bacillus thuringiensis. Can. J. Microbiol. 53: 284-290. https://doi.org/10.1139/w06-116
  7. Cherif, A., S. Chehimi, F. Limem, B. M. Hansen, N. B. Hendriksen, D. Daffonchio, and A. Boudabous. 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. J. Appl. Microbiol. 95: 990-1000. https://doi.org/10.1046/j.1365-2672.2003.02089.x
  8. Cherif, A., H. Ouzari, D. Daffonchio, H. Cherif, K. Ben Slama, A. Hassen, S. Jaoua, and A. Boudabous. 2001. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol. 32: 243-247. https://doi.org/10.1046/j.1472-765X.2001.00898.x
  9. Chung, Y. J. and J. N. Hansen. 1992. Determination of the sequence of spaE and identification of a promoter in the subtilin (spa) operon in Bacillus subtilis. J. Bacteriol. 174: 6699-6702. https://doi.org/10.1128/jb.174.20.6699-6702.1992
  10. Corvey, C., T. Stein, S. Dusterhus, M. Karas, and K. D. Entian. 2003. Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE), WprA, and Vpr. Biochem. Biophys. Res. Commun. 304: 48-54. https://doi.org/10.1016/S0006-291X(03)00529-1
  11. Delves-Broughton, J. 2005. Nisin as a food preservative. Food Aust. 57: 525-527.
  12. Duquesne, S., D. Destoumieux-Garzon, J. Peduzzi, and S. Rebuffat. 2007. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat. Prod. Rep. 24: 708-734. https://doi.org/10.1039/b516237h
  13. Duquesne, S., V. Petit, J. Peduzzi, and S. Rebuffat. 2007. Structural and functional diversity of microcins, gene-encoded antibacterial peptides from enterobacteria. J. Mol. Microbiol Biotechnol 13: 200-209. https://doi.org/10.1159/000104748
  14. Entian, K.-D. and W. M. de Vos. 1996. Genetics of subtilin and nisin biosyntheses. Antonie Van Leeuwenhoek 69: 109-117. https://doi.org/10.1007/BF00399416
  15. Garcia-Olmedo, F., A. Molina, J. M. Alamillo, and P. Rodriguez-Palenzuela. 1998. Plant defense peptides. Biopolymers 47: 479-491. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<479::AID-BIP6>3.0.CO;2-K
  16. Gillor, O., L. M. Nigro, and M. A. Riley. 2005. Genetically engineered bacteriocins and their potential as the next generation of antimicrobials. Curr. Pharm. Des. 11: 1067-1075. https://doi.org/10.2174/1381612053381666
  17. Guder, A., I. Wiedemann, and H. G. Sahl. 2000. Posttranslationally modified bacteriocins - the lantibiotics. Biopolymers 55: 62-73. https://doi.org/10.1002/1097-0282(2000)55:1<62::AID-BIP60>3.0.CO;2-Y
  18. Gutowski-Eckel, Z., C. Klein, K. Siegers, K. Bohm, M. Hammelmann, and K. D. Entian. 1994. Growth phase-dependent regulation and membrane localization of SpaB, a protein involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol. 60: 1-11.
  19. Hechard, Y. and H. G. Sahl. 2002. Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84: 545-557. https://doi.org/10.1016/S0300-9084(02)01417-7
  20. Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171-200.
  21. Kim, T. W., Y. H. Kim, S. E. Kim, J. H. Lee, C. S. Park, and H. Y. Kim. 2010. Identification and distribution of Bacillus species in doenjang by whole-cell protein patterns and 16S rRNA gene sequence analysis. J. Microbiol. Biotechnol. 20: 1210-1214. https://doi.org/10.4014/jmb.1002.02008
  22. Kim, T. W., J. H. Lee, S. E. Kim, M. H. Park, H. C. Chang, and H. Y. Kim. 2009. Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR - denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 131: 265-271. https://doi.org/10.1016/j.ijfoodmicro.2009.03.001
  23. Kim, T. W., J. H. Lee, M. H. Park, and H. Y. Kim. Analysis of bacterial and fungal communities in Japanese- and Chinese-fermented soybean pastes using nested PCR-DGGE. Curr. Microbiol. 60: 315-320.
  24. Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-85.
  25. Kleerebezem, M., R. Bongers, G. Rutten, W. M. de Vos, and O. P. Kuipers. 2004. Autoregulation of subtilin biosynthesis in Bacillus subtilis: The role of the spa-box in subtilin-responsive promoters. Peptides 25: 1415-1424. https://doi.org/10.1016/j.peptides.2003.11.025
  26. Kleerebezem, M. and L. E. Quadri. 2001. Peptide pheromonedependent regulation of antimicrobial peptide production in Gram-positive bacteria: A case of multicellular behavior. Peptides 22: 1579-1596. https://doi.org/10.1016/S0196-9781(01)00493-4
  27. Kleerebezem, M., L. E. Quadri, O. P. Kuipers, and W. M. de Vos. 1997. Quorum sensing by peptide pheromones and twocomponent signal-transduction systems in Gram-positive bacteria. Mol. Microbiol. 24: 895-904. https://doi.org/10.1046/j.1365-2958.1997.4251782.x
  28. Klein, C. and K. D. Entian. 1994. Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633. Appl. Environ. Microbiol. 60: 2793-2801.
  29. Klein, C., C. Kaletta, N. Schnell, and K. D. Entian. 1992. Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol. 58: 132-142.
  30. Le Marrec, C., B. Hyronimus, P. Bressollier, B. Verneuil, and M. C. Urdaci. 2000. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4). Appl. Environ. Microbiol. 66: 5213-5220. https://doi.org/10.1128/AEM.66.12.5213-5220.2000
  31. Lee, H., J. J. Churey, and R. W. Worobo. 2008. Purification and structural characterization of bacillomycin F produced by a bacterial honey isolate active against Byssochlamys fulva H25. J. Appl. Microbiol. 105: 663-673. https://doi.org/10.1111/j.1365-2672.2008.03797.x
  32. Lee, H., J. J. Churey, and R. W. Worobo. 2009. Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol. Lett. 299: 205-213. https://doi.org/10.1111/j.1574-6968.2009.01749.x
  33. Lee, H., J. J. Churey, and R. W. Worobo. 2009. Isolation and characterization of a protective bacterial culture isolated from honey active against American Foulbrood disease. FEMS Microbiol. Lett. 296: 39-44. https://doi.org/10.1111/j.1574-6968.2009.01615.x
  34. Lee, J. H., T. W. Kim, H. Lee, H. Chang, and H. Y. Kim. 2010. Determination of microbial diversity in meju, fermented cooked soya beans, using nested PCR-denaturing gradient gel electrophoresis. Lett. Appl. Microbiol. 51: 388-394. https://doi.org/10.1111/j.1472-765X.2010.02906.x
  35. Lehrer, R. I. and T. Ganz. 1999. Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol. 11: 23-27. https://doi.org/10.1016/S0952-7915(99)80005-3
  36. Maget-Dana, R. and F. Peypoux. 1994. Iturins, a special class of pore-forming lipopeptides: Biological and physicochemical properties. Toxicology 87: 151-174. https://doi.org/10.1016/0300-483X(94)90159-7
  37. Martin, N. I., H. Hu, M. M. Moake, J. J. Churey, R. Whittal, R. W. Worobo, and J. C. Vederas. 2003. Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J. Biol. Chem. 278: 13124-13132. https://doi.org/10.1074/jbc.M212364200
  38. McAuliffe, O., R. P. Ross, and C. Hill. 2001. Lantibiotics: Structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 25: 285-308. https://doi.org/10.1111/j.1574-6976.2001.tb00579.x
  39. Moyne, A. L., R. Shelby, T. E. Cleveland, and S. Tuzun. 2001. Bacillomycin D: An iturin with antifungal activity against Aspergillus flavus. J. Appl. Microbiol. 90: 622-629. https://doi.org/10.1046/j.1365-2672.2001.01290.x
  40. Naclerio, G., E. Ricca, M. Sacco, and M. De Felice. 1993. Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus. Appl. Environ. Microbiol. 59: 4313-4316.
  41. Nakano, M. M., G. Zheng, and P. Zuber. 2000. Dual control of sbo-alb operon expression by the Spo0 and ResDE systems of signal transduction under anaerobic conditions in Bacillus subtilis. J. Bacteriol. 182: 3274-3277. https://doi.org/10.1128/JB.182.11.3274-3277.2000
  42. Nes, I. F., D. B. Diep, L. S. Havarstein, M. B. Brurberg, V. Eijsink, and H. Holo. 1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70: 113-128. https://doi.org/10.1007/BF00395929
  43. Nissen-Meyer, J. and I. F. Nes. 1997. Ribosomally synthesized antimicrobial peptides: Their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 167: 67-77. https://doi.org/10.1007/s002030050418
  44. Oscariz, J. C., L. Cintas, H. Holo, I. Lasa, I. F. Nes, and A. G. Pisabarro. 2006. Purification and sequencing of cerein 7B, a novel bacteriocin produced by Bacillus cereus Bc7. FEMS Microbiol. Lett. 254: 108-115. https://doi.org/10.1111/j.1574-6968.2005.00009.x
  45. Oscariz, J. C., I. Lasa, and A. G. Pisabarro. 1999. Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiol. Lett. 178: 337-341. https://doi.org/10.1111/j.1574-6968.1999.tb08696.x
  46. Paik, H. D., S. S. Bae, S. H. Park, and J. G. Pan. 1997. Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp. tochigiensis. J. Ind. Microbiol. Biotechnol. 19: 294-298. https://doi.org/10.1038/sj.jim.2900462
  47. Papagianni, M. 2003. Ribosomally synthesized peptides with antimicrobial properties: Biosynthesis, structure, function, and applications. Biotechnol. Adv. 21: 465-499. https://doi.org/10.1016/S0734-9750(03)00077-6
  48. Parisot, J., S. Carey, E. Breukink, W. C. Chan, A. Narbad, and B. Bonev. 2008. Molecular mechanism of target recognition by subtilin, a class I lanthionine antibiotic. Antimicrob. Agents Chemother. 52: 612-618. https://doi.org/10.1128/AAC.00836-07
  49. Ross, R. P., S. Morgan, and C. Hill. 2002. Preservation and fermentation: Past, present and future. Int. J. Food Microbiol. 79: 3-16. https://doi.org/10.1016/S0168-1605(02)00174-5
  50. Sebei, S., T. Zendo, A. Boudabous, J. Nakayama, and K. Sonomoto. 2007. Characterization, N-terminal sequencing and classification of cerein MRX1, a novel bacteriocin purified from a newly isolated bacterium: Bacillus cereus MRX1. J. Appl. Microbiol. 103: 1621-1631. https://doi.org/10.1111/j.1365-2672.2007.03395.x
  51. Severinov, K., E. Semenova, A. Kazakov, T. Kazakov, and M. S. Gelfand. 2007. Low-molecular-weight post-translationally modified microcins. Mol. Microbiol. 65: 1380-1394. https://doi.org/10.1111/j.1365-2958.2007.05874.x
  52. Shai, Y. 2002. Mode of action of membrane active antimicrobial peptides. Biopolymers 66: 236-248. https://doi.org/10.1002/bip.10260
  53. Siegers, K., S. Heinzmann, and K. D. Entian. 1996. Biosynthesis of lantibiotic nisin. Posttranslational modification of its prepeptide occurs at a multimeric membrane-associated lanthionine synthetase complex. J. Biol. Chem. 271: 12294-12301. https://doi.org/10.1074/jbc.271.21.12294
  54. Siezen, R. J., O. P. Kuipers, and W. M. de Vos. 1996. Comparison of lantibiotic gene clusters and encoded proteins. Antonie Van Leeuwenhoek 69: 171-184. https://doi.org/10.1007/BF00399422
  55. Stein, T. 2005. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  56. Stein, T., S. Borchert, P. Kiesau, S. Heinzmann, S. Kloss, C. Klein, M. Helfrich, and K. D. Entian. 2002. Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Mol. Microbiol. 44: 403-416. https://doi.org/10.1046/j.1365-2958.2002.02869.x
  57. Stein, T., S. Heinzmann, S. Dusterhus, S. Borchert, and K. D. Entian. 2005. Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO1099. J. Bacteriol. 187: 822-828. https://doi.org/10.1128/JB.187.3.822-828.2005
  58. Stein, T., S. Heinzmann, P. Kiesau, B. Himmel, and K. D. Entian. 2003. The spa-box for transcriptional activation of subtilin biosynthesis and immunity in Bacillus subtilis. Mol. Microbiol. 47: 1627-1636. https://doi.org/10.1046/j.1365-2958.2003.03374.x
  59. Storm, D. R., K. S. Rosenthal, and P. E. Swanson. 1977. Polymyxin and related peptide antibiotics. Annu. Rev. Biochem. 46: 723-763. https://doi.org/10.1146/annurev.bi.46.070177.003451
  60. Thomson, J. M. and R. A. Bonomo. 2005. The threat of antibiotic resistance in Gram-negative pathogenic bacteria: Betalactams in peril! Curr. Opin. Microbiol. 8: 518-524. https://doi.org/10.1016/j.mib.2005.08.014
  61. Tossi, A., L. Sandri, and A. Giangaspero. 2000. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55: 4-30. https://doi.org/10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M
  62. Twomey, D., R. P. Ross, M. Ryan, B. Meaney, and C. Hill. 2002. Lantibiotics produced by lactic acid bacteria: Structure, function and applications. Antonie Van Leeuwenhoek 82: 165-185. https://doi.org/10.1023/A:1020660321724
  63. Walsh, C. 2003. Section II: Validated targets and major antibiotic classes. In: Antibiotiotics: Actions, Origins, Resistance. ASM Press.
  64. Yeaman, M. R. and N. Y. Yount. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55: 27-55. https://doi.org/10.1124/pr.55.1.2
  65. Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395. https://doi.org/10.1038/415389a
  66. Zheng, G., L. Z. Yan, J. C. Vederas, and P. Zuber. 1999. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J. Bacteriol. 181: 7346-7355.

피인용 문헌

  1. Recent derivatives from smaller classes of fermentation-derived antibacterials vol.22, pp.1, 2011, https://doi.org/10.1517/13543776.2012.642370
  2. Classification of Bacillus Beneficial Substances Related to Plants, Humans and Animals vol.22, pp.12, 2011, https://doi.org/10.4014/jmb.1204.04013
  3. Antibacterial Peptides “Bacteriocins”: An Overview of Their Diverse Characteristics and Applications vol.17, pp.1, 2011, https://doi.org/10.4265/bio.17.1
  4. Assessment of the Bacteriocinogenic Potential of Marine Bacteria Reveals Lichenicidin Production by Seaweed-Derived Bacillus spp. vol.10, pp.12, 2011, https://doi.org/10.3390/md10102280
  5. Peptides as the next generation of anti-infectives vol.5, pp.3, 2011, https://doi.org/10.4155/fmc.12.213
  6. Investigation of the Antimicrobial Activity of Bacillus licheniformis Strains Isolated from Retail Powdered Infant Milk Formulae vol.6, pp.1, 2014, https://doi.org/10.1007/s12602-013-9151-1
  7. A new biofilm-associated colicin with increased efficiency against biofilm bacteria vol.8, pp.6, 2011, https://doi.org/10.1038/ismej.2013.238
  8. Bacterial Community of Koumiss from Mongolia Investigated by Culture and Culture-Independent Methods vol.28, pp.4, 2011, https://doi.org/10.1080/08905436.2014.964253
  9. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? vol.5, pp.None, 2011, https://doi.org/10.3389/fmicb.2014.00217
  10. Sil: A Streptococcus iniae Bacteriocin with Dual Role as an Antimicrobial and an Immunomodulator That Inhibits Innate Immune Response and Promotes S. iniae Infection vol.9, pp.4, 2014, https://doi.org/10.1371/journal.pone.0096222
  11. Alternatives to Antibiotics to Prevent Necrotic Enteritis in Broiler Chickens: A Microbiologist's Perspective vol.6, pp.None, 2011, https://doi.org/10.3389/fmicb.2015.01336
  12. Bacillus amyloliquefaciens AG1 biosurfactant: Putative receptor diversity and histopathological effects on Tuta absoluta midgut vol.132, pp.None, 2011, https://doi.org/10.1016/j.jip.2015.08.010
  13. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems? vol.7, pp.None, 2011, https://doi.org/10.3389/fmicb.2016.00461
  14. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species vol.17, pp.None, 2016, https://doi.org/10.1186/s12864-016-3224-y
  15. Evaluation of the toxicity and pathogenicity of biocontrol agents in murine models, chicken embryos and dermal irritation in rabbits vol.6, pp.2, 2011, https://doi.org/10.1039/c6tx00275g
  16. Diversity of Marine Bacteria and Their Bacteriocins: Applications in Aquaculture vol.25, pp.4, 2017, https://doi.org/10.1080/23308249.2017.1282417
  17. Isolation and Characterization of Bacteria Colonizing Acartia tonsa Copepod Eggs and Displaying Antagonist Effects against Vibrio anguillarum , Vibrio alginolyticus and Other Pathogenic Strains vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.01919
  18. 왕우럭(Tresus keenae)에서 분리된 Bacillus species의 고분자 유기물질 분해능력과 항균활성 vol.40, pp.4, 2011, https://doi.org/10.7853/kjvs.2017.40.4.265
  19. Class III bacteriocin Helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane vol.45, pp.3, 2018, https://doi.org/10.1007/s10295-018-2008-6
  20. Bacillus spp. as direct-fed microbial antibiotic alternatives to enhance growth, immunity, and gut health in poultry vol.47, pp.4, 2011, https://doi.org/10.1080/03079457.2018.1464117
  21. In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters vol.19, pp.None, 2011, https://doi.org/10.1186/s12864-018-4796-5
  22. Response of Gut Microbiota to Dietary Fiber and Metabolic Interaction With SCFAs in Piglets vol.9, pp.None, 2011, https://doi.org/10.3389/fmicb.2018.02344
  23. The Bacteriocinogenic Potential of Marine Microorganisms vol.44, pp.6, 2011, https://doi.org/10.1134/s1063074018060020
  24. Preservation of Meat Products with Bacteriocins Produced by Lactic Acid Bacteria Isolated from Meat vol.2019, pp.None, 2011, https://doi.org/10.1155/2019/4726510
  25. Bacteria Hunt Bacteria through an Intriguing Cyclic Peptide vol.14, pp.1, 2011, https://doi.org/10.1002/cmdc.201800597
  26. Staphylococcus aureus Colonization of the Human Nose and Interaction with Other Microbiome Members vol.7, pp.2, 2011, https://doi.org/10.1128/microbiolspec.gpp3-0029-2018
  27. Seeds, fermented foods, and agricultural by-products as sources of plant-derived antibacterial peptides vol.59, pp.suppl1, 2011, https://doi.org/10.1080/10408398.2018.1561418
  28. Genusbacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish vol.27, pp.3, 2011, https://doi.org/10.1080/23308249.2019.1597010
  29. Microbial metabolomics: essential definitions and the importance of cultivation conditions for utilizing Bacillus species as bionematicides vol.127, pp.2, 2011, https://doi.org/10.1111/jam.14218
  30. Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6 vol.19, pp.None, 2019, https://doi.org/10.1186/s12866-018-1380-8
  31. Bacteriotherapy in Breast Cancer vol.20, pp.23, 2011, https://doi.org/10.3390/ijms20235880
  32. Antibacterial Activity of Lactic Acid Bacteria to Improve Shelf Life of Raw Meat vol.24, pp.4, 2011, https://doi.org/10.4265/bio.24.185
  33. Bacterial Natural Compounds with Anti-Inflammatory and Immunomodulatory Properties (Mini Review) vol.14, pp.None, 2011, https://doi.org/10.2147/dddt.s261283
  34. Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides vol.104, pp.3, 2011, https://doi.org/10.1007/s00253-019-10300-8
  35. Complete reutilisation of mixed mackerel and brown seaweed wastewater as a high-quality biofertiliser in open-flow lettuce hydroponics vol.247, pp.None, 2011, https://doi.org/10.1016/j.jclepro.2019.119081
  36. Pressure and Temperature Combined With Microbial Supernatant Effectively Inactivate Bacillus subtilis Spores vol.12, pp.None, 2011, https://doi.org/10.3389/fmicb.2021.642501
  37. Bacteriocinogenic Bacillus spp. Isolated from Korean Fermented Cabbage (Kimchi)-Beneficial or Hazardous? vol.7, pp.2, 2011, https://doi.org/10.3390/fermentation7020056
  38. A Review of the Effects and Production of Spore-Forming Probiotics for Poultry vol.11, pp.7, 2011, https://doi.org/10.3390/ani11071941
  39. Looking into key bacterial proteins involved in gut dysbiosis vol.11, pp.4, 2011, https://doi.org/10.5662/wjm.v11.i4.130
  40. Biopreservative application of bacteriocins obtained from samples Ictalurus punctatus and fermented Zea mays vol.15, pp.8, 2011, https://doi.org/10.5897/ajmr2017.8443