References
- Allan, W. H., J. E. Lancaster, and B. Toth. 1978. Newcastle disease vaccines, their production and use, pp. 57-62. In: FAO Animal Production Health, Series-10. United Nations, Rome.
-
Brown, G. D. and S. Gordon. 2005. Immune recognition of fungal
$\beta$ -glucans [Review]. Cell Microbiol. 7: 471-479. https://doi.org/10.1111/j.1462-5822.2005.00505.x -
Brown, G. D., P. R. Taylor, D. M. Reid, J. A. Willment, D. L. Williams, L. Martinez-Pomares, S. Y. C. Wong, and S. Gordon. 2002. Dectin-1 is a major
$\beta$ -glucan receptor on macrophages. J. Exp. Med. 196: 407-412. https://doi.org/10.1084/jem.20020470 -
Chae, B. J., J. D. Lohakare, W. K. Moon, S. L. Lee, Y. H. Park, and T. W. Hahn. 2006. Effects of supplementation of
$\beta$ -glucan on the growth performance and immunity in broilers. Res. Vet. Sci. 80: 291-298. https://doi.org/10.1016/j.rvsc.2005.07.008 - Chen, J. and R. Seviour. 2007. Medicinal importance of fungal b-(1/3), (1/6)-glucans. Mycol. Res. 111: 635-652. https://doi.org/10.1016/j.mycres.2007.02.011
- Cheng, Y., D. Lee, C. Wen, and C. Weng. 2004. Effects of betaglucan supplementation on lymphocyte proliferation, macrophage chemotaxis and specific immune responses in broilers. Asian- Aust. J. Anim. Sci. 17: 1145-1149.
- Dillon, S., S. Agrawal, K. Banerjee, J. Letterio, T. L. Denning, K. Oswald-Richter, et al. 2006. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Clin. Invest. 116: 916-928. https://doi.org/10.1172/JCI27203
- DiNapoli, J. M., L. Yang, A. Jr. Suguitan, S. Elankumaran, D. W. Dorward, B. R. Murphy, S. K. Samal, P. L. Collins, and A. Bukreyev. 2007. Immunization of primates with a Newcastle disease virus-vectored vaccine via the respiratory tract induces a high titer of serum neutralizing antibodies against highly pathogenic avian influenza virus. J. Virol. 81: 11560-11568. https://doi.org/10.1128/JVI.00713-07
- Dung Nguyen, T., T. Vinh Nguyen, D. Vijaykrishna, R. G. Webster, Y. Guan, J. S. M. Peiris, and G. J. Smith. 2008. Multiple sublineages of influenza A virus (H5N1), Vietnam, 2005-2007. Emerg. Infect. Dis. 14: 632-636. https://doi.org/10.3201/eid1404.071343
- Goetz, S. K., E. Spackman, C. Hayhow, and D. E. Swayne. 2008. Assessment of reduced vaccine dose on efficacy of an inactivated avian influenza vaccine against an H5N1 highpathogenicity avian influenza virus. J. Appl. Poult. Res. 17: 145-150. https://doi.org/10.3382/japr.2007-00098
- Hobson, D., R. L. Curry, A. S. Beare, and A. Ward-Gardner. 1972. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. J. Hyg. 70: 767-777. https://doi.org/10.1017/S0022172400022610
- Huff, G. R., W. E. Huff, N. C. Rath, and G. Tellez. 2006. Limited treatment with beta-1,3/1,6-glucan improves production values of broiler chickens challenged with Escherichia coli. Poult. Sci. 85: 613-618.
- Ichinohe, T., A. Ainai, T. Nakamura, Y. Akiyama, J. Maeyama, T. Odagiri, et al. 2010. Induction of cross-protective immunity against influenza A virus H5N1 by an intranasal vaccine with extracts of mushroom mycelia. J. Med. Virol. 82: 128-137. https://doi.org/10.1002/jmv.21670
-
Ikewaki, N., N. Fujii, T. Onaka, S. Ikewaki, and H. Inoko. 2007. Immunological actions of Sophy
$\beta$ -glucan (beta-1,3-1,6 glucan), currently available commercially as a health food supplement. Microbiol. Immunol. 51: 861-873. -
Le, T. H., K. X. T. Le, P. V. Cuong, N. T. K. Cuc, T. B. Le, Y. Ikeue, Y. Watanabe, and T. Agatsuma. 2010. Adjuvant effects of Sophy
$\beta$ -glucan on H5N1 and H5N2 vaccination using a mouse model. Trop. Med. Health 38: 23-27. https://doi.org/10.2149/tmh.2009-13 - Li, B., D. Cramer, S. Wagner, R. Hansen, C. King, S. Kakar, C. Ding, and J. Yan. 2007. Yeast glucan particles activate murine resident macrophages to secrete proinflammatory cytokines via MyD88- and Syk kinase-dependent pathways. Clin. Immunol. 124: 170-181. https://doi.org/10.1016/j.clim.2007.05.002
- Moro de Sousa, R. L., H. J. Montassier, and A. A. Pinto. 2000. Detection and quantification of antibodies to Newcastle disease virus in ostrich and rhea sera using a liquid phase blocking enzyme-linked immunosorbent assay. Clin. Diagn. Lab. Immunol. 7: 940-944.
- Peyre, M., G. Fusheng, S. Desvaux, and F. Roger. 2009. Avian influenza vaccines: A practical review in relation to their application in the field with a focus on the Asian experience. Epidemiol. Infect. 137: 1-21. https://doi.org/10.1017/S0950268808001039
-
Soltanian, S., E. Stuyven, E. Cox, P. Sorgeloos, and P. Bossier. 2009.
$\beta$ Glucans as immunostimulant in vertebrates and invertebrates. Crit. Rev. Microbiol. 35: 109-138. https://doi.org/10.1080/10408410902753746 -
Suzuki, Y., Y. Adachi, N. Ohno, and T. Yadomae. 2001. Th1/ Th2-Balancing immunomodulating activity of gel-forming (1-->3)-
$\beta$ glucans from fungi. Biol. Pharm. Bull. 24: 811-819. https://doi.org/10.1248/bpb.24.811 - Swayne, D. E. 2006. Principles for vaccine protection in chickens and domestic waterfowl against avian influenza Emphasis on asian H5N1 high pathogenicity avian influenza. Ann. N.Y. Acad. Sci. 1081: 174-181. https://doi.org/10.1196/annals.1373.021
- Swayne, D. E., J. R. Beck, M. Garcia, and H. D. Stone. 1999. Influence of virus strain and antigen mass on efficacy of H5 avian influenza inactivated vaccines. Avian Pathol. 28: 245- 255. https://doi.org/10.1080/03079459994731
- Takahashi, Y., H. Hasegawa, Y. Hara, M. Ato, A. Ninomiya, H. Takagi, et al. 2009. Protective immunity afforded by inactivated H5N1 (NIBRG-14) vaccine requires antibodies against both hemagglutinin and neuraminidase in mice. J. Infect. Dis. 199: 1629-1637. https://doi.org/10.1086/598954
-
Taylor, P. R., G. D. Brown, D. M. Reid, J. A. Willment, L. Martinez-Pomares, S. Gordon, and S. Y. C. Wong. 2002. The
$\beta$ - glucan receptor Dectin-1 is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol. 169: 3876-3882. - Tian, G., S. Zhang, Y. Li, Z. Bu, P. Liu, J. Zhou, et al. 2005. Protective efficacy in chickens, geese and ducks of an H5N1- inactivated vaccine developed by reverse genetics. Virology 341: 153-162. https://doi.org/10.1016/j.virol.2005.07.011
- Wasser, S. P. and A. L. Weis. 1999. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: A modern perspective. Crit. Rev. Immunol. 19: 65-96.
- WHO. 2002. Manual on Animal Influenza Diagnosis and Surveillance.
- Yoon, H. S., J. W. Kim, H. R. Cho, S. B. Moon, H. D. Shin, K. J. Yang, H. S. Lee, Y. S. Kwon, and S. K. Ku. 2010. Immunomodulatory effects of Aureobasidium pullulans SM- 2001 exopolymers on cyclophosphamide-treated mice. J. Microbiol. Biotechnol. 20: 433-440.
Cited by
- Evolutionary dynamics of highly pathogenic avian influenza A/H5N1 HA clades and vaccine implementation in Vietnam vol.3, pp.2, 2011, https://doi.org/10.7774/cevr.2014.3.2.117
- A potential protein-based vaccine for influenza H5N1 from the recombinant HA1 domain of avian influenza A/H5N1 expressed in Pichia pastoris vol.9, pp.12, 2011, https://doi.org/10.2217/fvl.14.93
- Effect of nutritional interventions with quercetin, oat hulls, β-glucans, lysozyme and fish oil on performance and health status related parameters of broilers chickens vol.59, pp.5, 2011, https://doi.org/10.1080/00071668.2018.1496402
- Role of Immune Dysregulation in Increased Mortality Among a Specific Subset of COVID-19 Patients and Immune-Enhancement Strategies for Combatting Through Nutritional Supplements vol.11, pp.None, 2011, https://doi.org/10.3389/fimmu.2020.01548
- Review: β-glucans as Effective Antibiotic Alternatives in Poultry vol.26, pp.12, 2011, https://doi.org/10.3390/molecules26123560
- β-glucans: wide-spectrum immune-balancing food-supplement-based enteric (β-WIFE) vaccine adjuvant approach to COVID-19 vol.17, pp.8, 2021, https://doi.org/10.1080/21645515.2021.1880210
- β‑glucan vaccine adjuvant approach for cancer treatment through immune enhancement (B‑VACCIEN) in specific immunocompromised populations (Review) vol.47, pp.1, 2011, https://doi.org/10.3892/or.2021.8225
- Ingestion of beta‐glucans could stimulate longer‐lasting cellular immunity upon administration of COVID‐19 vaccines vol.45, pp.11, 2011, https://doi.org/10.1111/jfbc.13959
- β-Glucans Could Be Adjuvants for SARS-CoV-2 Virus Vaccines (COVID-19) vol.18, pp.23, 2011, https://doi.org/10.3390/ijerph182312636