참고문헌
- Adem, P. V., C. P. Montgomery, A. N. Husain, T. K. Koogler, V. Arangelovich, M. Humilier, S. Boyle-Vavra, and R. S. Daum. 2005. Staphylococcus aureus sepsis and the Waterhouse- Friderichsen syndrome in children. N. Engl. J. Med. 353: 1245- 1251. https://doi.org/10.1056/NEJMoa044194
- Bakker-Woudenbera, I. A. J. M., G. Storm, and M. C. Woodle. 1994. Liposomes in the treatment of infections. J. Drug Target. 2: 363-371. https://doi.org/10.3109/10611869408996811
- Bergsson, G., J. Arnfinnsson, O. Steingrimsson, and H. Thormar. 2001. Killing of Gram-positive cocci by fatty acids and monoglycerides. APMIS 109: 670-678. https://doi.org/10.1034/j.1600-0463.2001.d01-131.x
- Bodoprost, J. and H. Rosemeyer. 2007. Analysis of phenacylester derivatives of fatty acids from human skin surface sebum by reversed-phase HPLC: Chromatographic mobility as a function of physico-chemical properties. Int. J. Mol. Sci. 8: 1111-1124. https://doi.org/10.3390/i8111111
- Boyle-Vavra, S. and R. S. Daum. 2007. Community-acquired methicillin-resistant Staphylococcus aureus: The role of Panton- Valentine leukocidin. Lab. Invest. 87: 3-9. https://doi.org/10.1038/labinvest.3700501
- Brien, S., P. Prescott, N. Bashir, H. Lewith, and G. Lewith. 2008. Systematic review of the nutritional supplements dimethyl sulfoxide (DMSO) and methylsulfonylmethane (MSM) in the treatment of osteoarthritis. Osteoarthr. Cartilage 16: 1277-1288. https://doi.org/10.1016/j.joca.2008.03.002
- Cardoso, C. R. B., M. A. Souza, E. A. V. Ferro, S. Favoreto, and J. D. O. Pena. 2004. Influence of topical administration of n-3 and n-6 essential and n-9 nonessential fatty acids on the healing of cutaneous wounds. Wound Repair Regen. 12: 235-243. https://doi.org/10.1111/j.1067-1927.2004.012216.x
- Clarke, S. R., R. Mohamed, L. Bian, A. F. Routh, J. F. Kokai- Kun, J. J. Mond, A. Tarkowski, and S. J. Foster. 2007. The Staphylococcus aureus surface protein IsdA mediates resistance to innate defenses of human skin. Cell Host Microbe 1: 199-212. https://doi.org/10.1016/j.chom.2007.04.005
- Cohen, A. L., C. Shuler, S. McAllister, G. E. Fosheim, M. G. Brown, D. Abercrombie, et al. 2007. Methamphetamine use and methicillin-resistant Staphylococcus aureus skin infections. Emerg. Infect. Dis. 13: 1707-1713. https://doi.org/10.3201/eid1311.070148
- de Pablo, M. A. and G. Alvarez de Cienfuegos. 2000. Modulatory effects of dietary lipids on immune system functions. Immunol. Cell Biol. 78: 31-39. https://doi.org/10.1046/j.1440-1711.2000.00875.x
- Desbois, A. P., T. Lebl, L. Yan, and V. J. Smith. 2008. Isolation and structural characterization of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum. Appl. Microbiol. Biotechnol. 81: 755-764. https://doi.org/10.1007/s00253-008-1714-9
- Desbois, A. P. and V. J. Smith. 2010. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 85: 1629-1642. https://doi.org/10.1007/s00253-009-2355-3
- Diep, B. A., H. A. Carleton, R. F. Chang, G. F. Sensabaugh, and F. Perdreau-Remington. 2006. Roles of 34 virulence genes in the evolution of hospital- and community-associated strains of methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 193: 1495-1503. https://doi.org/10.1086/503777
- Fernandez-Lopez, R., C. Machon, C. M. Longshaw, S. Martin, S. Molin, E. L. Zechner, M. Espinosa, E. Lanka, and F. de la Cruz. 2005. Unsaturated fatty acids are inhibitors of bacterial conjugation. Microbiology 151: 3517-3526. https://doi.org/10.1099/mic.0.28216-0
- Galbraith, H. and T. B. Miller. 1973. Effect of long chain fatty acids on bacterial respiration and amino acid uptake. J. Appl. Bacteriol. 36: 659-675. https://doi.org/10.1111/j.1365-2672.1973.tb04151.x
- Georgel, P., K. Crozat, X. Lauth, E. Makrantonaki, H. Seltmann, S. Sovath, et al. 2005. A Toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with Gram-positive bacteria. Infect. Immun. 73: 4512-4521. https://doi.org/10.1128/IAI.73.8.4512-4521.2005
- Gibbons, M. A., D. M. Bowdish, D. J. Davidson, J. M. Sallenave, and A. J. Simpson. 2006. Endogenous pulmonary antibiotics. Scot. Med. J. 51: 37-42.
- Gilbert, M., J. MacDonald, D. Gregson, J. Siushansian, K. Zhang, S. Elsayed, et al. 2006. Outbreak in Alberta of community-acquired (USA300) methicillin-resistant Staphylococcus aureus in people with a history of drug use, homelessness or incarceration. CMAJ 175: 149-154.
- Goetghebeur, M., P. A. Landry, D. Han, and C. Vicente. 2007. Methicillin-resistant Staphylococcus aureus: A public health issue with economic consequences. Can. J. Infect. Dis. Med. 18: 27-34.
- Hackbarth, C. J. and H. F. Chambers. 1993. Blai and Blar1 regulate beta-lactamase and Pbp 2a production in methicillin- Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 37: 1144-1149. https://doi.org/10.1128/AAC.37.5.1144
- Hamosh, M. 1998. Protective function of proteins and lipids in human milk. Biol. Neonate 74: 163-176. https://doi.org/10.1159/000014021
- Heczko, P. B., R. Lutticken, W. Hryniewicz, M. Neugebauer, and G. Pulverer. 1979. Susceptibility of Staphylococcus aureus and group A, B, C, and G streptococci to Free fatty acids. J. Clin. Microbiol. 9: 333-335.
- Homa, D. G. and M. A. Palfreyman. 2000. Infectious diseases in the operating room. CRNA 11: 8-14.
- Huang, C. M., C. H. Chen, D. Pornpattananangkul, L. Zhang, M. Chan, M. F. Hsieh, and L. F. Zhang. 2011. Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids. Biomaterials 32: 214-221. https://doi.org/10.1016/j.biomaterials.2010.08.076
- Kabara, J. J., D. Swieczkowski, A. J. Conley, and J. P. Truant. 1972. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 2: 23-28. https://doi.org/10.1128/AAC.2.1.23
- Kabara, J. J. 1984. Antimicrobial agents derived from fatty acids. J. Am. Oil. Chem. Soc. 61: 397-403. https://doi.org/10.1007/BF02678802
- Kangani, C. O., D. E. Kelley, and J. P. DeLany. 2008. New method for GC/FID and GC-C-IRMS analysis of plasma free fatty acid concentration and isotopic enrichment. J. Chromatogr. B 873: 95-101. https://doi.org/10.1016/j.jchromb.2008.08.009
- Kaplan, S. L., K. G. Hulten, B. E. Gonzalez, W. A. Hammerman, L. Lamberth, J. Versalovic, and E. O. Mason Jr. 2005. Threeyear surveillance of community-acquired Staphylococcus aureus infections in children. Clin. Infect. Dis. 40: 1785-1791. https://doi.org/10.1086/430312
- Kelsey, J. A., K. W. Bayles, B. Shafii, and M. A. McGuire. 2006. Fatty acids and monoacylglycerols inhibit growth of Staphylococcus aureus. Lipids 41: 951-961. https://doi.org/10.1007/s11745-006-5048-z
- Kenny, J. G., D. Ward, E. Josefsson, I. M. Jonsson, J. Hinds, H. H. Rees, J. A. Lindsay, A. Tarkowski, and M. J. Horsburgh. 2009. The Staphylococcus aureus response to unsaturated long chain free fatty acids: Survival mechanisms and virulence implications. PLoS ONE 4: e4344. https://doi.org/10.1371/journal.pone.0004344
- Klevens, R. M., M. A. Morrison, J. Nadle, S. Petit, K. Gershman, S. Ray, et al. 2007. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298: 1763-1771. https://doi.org/10.1001/jama.298.15.1763
- Knapp, H. R. and M. A. Melly. 1986. Bactericidal effects of polyunsaturated fatty acids. J. Infect. Dis. 154: 84-94. https://doi.org/10.1093/infdis/154.1.84
- Kollef, M. H. 2009. New antimicrobial agents for methicillinresistant Staphylococcus aureus. Crit. Care Resusc. 11: 282-286.
- Kotani, A., Y. Hayashi, R. Matsuda, and F. Kusu. 2003. Prediction of measurement precision of apparatus using a chemometric tool in electrochemical detection of high-performance liquid chromatography. J. Chromatogr. A 986: 239-246. https://doi.org/10.1016/S0021-9673(02)02009-5
- Lee, C., J. Barnett, and P. D. Reaven. 1998. Liposomes enriched in oleic acid are less susceptible to oxidation and have less proinflammatory activity when exposed to oxidizing conditions. J. Lipid Res. 39: 1239-1247.
- Lehrer, R. I., M. Rosenman, S. S. Harwig, R. Jackson, and P. Eisenhauer. 1991. Ultrasensitive assays for endogenous antimicrobial polypeptides. J. Immunol. Methods 137: 167-173. https://doi.org/10.1016/0022-1759(91)90021-7
- Martin, A. and M. Clynes. 1991. Acid phosphatase: Endpoint for in vitro toxicity tests. In Vitro Cell Dev. Biol. 27A: 183- 184.
- Nakatsuji, T., M. C. Kao, L. Zhang, C. C. Zouboulis, R. L. Gallo, and C. M. Huang. 2010. Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating beta-defensin-2 expression. J. Invest. Dermatol. 130: 985-994. https://doi.org/10.1038/jid.2009.384
- Nicollier, M., T. Massengo, J. P. Remy-Martin, R. Laurent, and G. L. Adessi. 1986. Free fatty acids and fatty acids of triacylglycerols in normal and hyperkeratotic human stratum corneum. J. Invest. Dermatol. 87: 68-71. https://doi.org/10.1111/1523-1747.ep12523574
- Nieman, C. 1954. Influence of trace amounts of fatty acids on the growth of microorganisms. Bacteriol. Rev. 18: 147-163.
- Ntambi, J. M. 1995. The regulation of stearoyl-CoA desaturase (SCD). Prog. Lipid Res. 34: 139-150. https://doi.org/10.1016/0163-7827(94)00010-J
- Payne, D. J. 2008. Microbiology. Desperately seeking new antibiotics. Science 321: 1644-1645. https://doi.org/10.1126/science.1164586
- Pereira, L. M., E. Hatanaka, E. F. Martins, F. Oliveira, E. A. Liberti, S. H. Farsky, R. Curi, and T. C. Pithon-Curi. 2008. Effect of oleic and linoleic acids on the inflammatory phase of wound healing in rats. Cell Biochem. Funct. 26: 197-204. https://doi.org/10.1002/cbf.1432
- Peschel, A., R. W. Jack, M. Otto, L. V. Collins, P. Staubitz, G. Nicholson, et al. 2001. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J. Exp. Med. 193: 1067-1076. https://doi.org/10.1084/jem.193.9.1067
- Sado Kamdem, S., M. E. Guerzoni, J. Baranyi, and C. Pin. 2008. Effect of capric, lauric and alpha-linolenic acids on the division time distributions of single cells of Staphylococcus aureus. Int. J. Food Microbiol. 128: 122-128. https://doi.org/10.1016/j.ijfoodmicro.2008.08.002
- Smith, P. A. and F. E. Romesberg. 2007. Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nat. Chem. Biol. 3: 549-556. https://doi.org/10.1038/nchembio.2007.27
- Speert, D. P., L. W. Wannamaker, E. D. Gray, and C. C. Clawson. 1979. Bactericidal effect of oleic acid on group A streptococci: Mechanism of action. Infect. Immun. 26: 1202-1210.
- Stewart, M. E. 1992. Sebaceous gland lipids. Semin. Dermatol. 11: 100-105.
- Takano, T., K. Saito, L. J. Teng, and T. Yamamoto. 2007. Spread of community-acquired methicillin-resistant Staphylococcus aureus (MRSA) in hospitals in Taipei, Taiwan in 2005, and comparison of its drug resistance with previous hospitalacquired MRSA. Microbiol. Immunol. 51: 627-632.
- Takizawa, Y., I. Taneike, S. Nakagawa, T. Oishi, Y. Nitahara, N. Iwakura, et al. 2005. A Panton-Valentine leucocidin (PVL)- positive community-acquired methicillin-resistant Staphylococcus aureus (MRSA) strain, another such strain carrying a multipledrug resistance plasmid, and other more-typical PVL-negative MRSA strains found in Japan. J. Clin. Microbiol. 43: 3356-3363. https://doi.org/10.1128/JCM.43.7.3356-3363.2005
- Tancrede, C. 1992. Role of human microflora in health and disease. Eur. J. Clin. Microbiol. 11: 1012-1015. https://doi.org/10.1007/BF01967791
- Van Bambeke, F., M. P. Mingeot-Leclercq, M. J. Struelens, and P. M. Tulkens. 2008. The bacterial envelope as a target for novel anti-MRSA antibiotics. Trends Pharmacol. Sci. 29: 124-134. https://doi.org/10.1016/j.tips.2007.12.004
- Weigel, L. M., D. B. Clewell, S. R. Gill, N. C. Clark, L. K. McDougal, S. E. Flannagan, et al. 2003. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302: 1569-1571. https://doi.org/10.1126/science.1090956
- Wilkinson, D. I. and J. T. Walsh. 1974. Effect of various methods of epidermal-dermal separation on distribution of acetate- C-14-labeled polyunsaturated fatty acids in skin compartments. J. Invest. Dermatol. 62: 517-521. https://doi.org/10.1111/1523-1747.ep12681061
- Wilson, P. C. and B. Rinker. 2009. The incidence of methicillinresistant Staphylococcus aureus in community-acquired hand infections. Ann. Plas. Surg. 62: 513-516. https://doi.org/10.1097/SAP.0b013e31818a6665
- Yang, D. R., D. Pornpattananangkul, T. Nakatsuji, M. Chan, D. Carson, C. M. Huang, and L. F. Zhang. 2009. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials 30: 6035-6040. https://doi.org/10.1016/j.biomaterials.2009.07.033
- Zesch, A. 1983. Skin irritation by topical drugs. Derm. Beruf. Umwelt. 31: 74-78.
- Zouboulis, C. C., H. Seltmann, H. Neitzel, and C. E. Orfanos. 1999. Establishment and characterization of an immortalized human sebaceous gland cell line (SZ95). J. Invest. Dermatol. 113: 1011-1020. https://doi.org/10.1046/j.1523-1747.1999.00771.x
피인용 문헌
- Alterations in the Porcine Colon Microbiota Induced by the Gastrointestinal Nematode Trichuris suis vol.80, pp.6, 2011, https://doi.org/10.1128/iai.00141-12
- Host- and microbe determinants that may influence the success of S. aureus colonization vol.2, pp.None, 2012, https://doi.org/10.3389/fcimb.2012.00056
- Effect of exogenous fatty acids on the growth and production of exopolysaccharides of obligately methylotrophic bacterium Methylophilus quaylei vol.48, pp.2, 2012, https://doi.org/10.1134/s0003683812020093
- Evaluation of the Quantitative and Qualitative Alterations in the Fatty Acid Contents of the Sebum of Patients with Inflammatory Acne during Treatment with Systemic Lymecycline and/or Oral Fatty Acid vol.2013, pp.None, 2011, https://doi.org/10.1155/2013/120475
- Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design vol.4, pp.None, 2011, https://doi.org/10.3389/fimmu.2013.00507
- Acne is an inflammatory disease and alterations of sebum composition initiate acne lesions vol.28, pp.5, 2014, https://doi.org/10.1111/jdv.12298
- Propionic acid and its esterified derivative suppress the growth of methicillin-resistant Staphylococcus aureus USA300 vol.5, pp.2, 2011, https://doi.org/10.3920/bm2013.0031
- Antibacterial Effect of Fatty Acid Salts on Oral Bacteria vol.20, pp.3, 2015, https://doi.org/10.4265/bio.20.209
- Combating against methicillin-resistant Staphylococcus aureus - two fatty acids from Purslane (Portulaca oleracea L.) exhibit synergistic effects with erythromycin vol.67, pp.1, 2011, https://doi.org/10.1111/jphp.12315
- Cholesteryl Esters Are Elevated in the Lipid Fraction of Bronchoalveolar Lavage Fluid Collected from Pediatric Cystic Fibrosis Patients vol.10, pp.4, 2011, https://doi.org/10.1371/journal.pone.0125326
- The role of the local microbial ecosystem in respiratory health and disease vol.370, pp.1675, 2015, https://doi.org/10.1098/rstb.2014.0294
- Targeting fatty acid metabolism to improve glucose metabolism vol.16, pp.9, 2015, https://doi.org/10.1111/obr.12298
- Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides vol.21, pp.3, 2011, https://doi.org/10.3390/molecules21030305
- Oxylipins produced by Pseudomonas aeruginosa promote biofilm formation and virulence vol.7, pp.1, 2011, https://doi.org/10.1038/ncomms13823
- Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols vol.7, pp.1, 2011, https://doi.org/10.1128/mbio.01725-15
- Effect of Oils Extracted from Plant Seeds on the Growth and Lipolytic Activity of Yarrowia lipolytica Yeast vol.94, pp.5, 2011, https://doi.org/10.1007/s11746-017-2975-1
- Selective Bactericidal Activity of Divalent Metal Salts of Lauric Acid vol.2, pp.1, 2017, https://doi.org/10.1021/acsomega.6b00279
- Sebaceous-immunobiology is orchestrated by sebum lipids vol.9, pp.1, 2011, https://doi.org/10.1080/19381980.2017.1375636
- Physicochemical and antimicrobial properties of natural rubber latex films in the presence of vegetable oil microemulsions vol.134, pp.18, 2011, https://doi.org/10.1002/app.44788
- Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications vol.19, pp.4, 2011, https://doi.org/10.3390/ijms19041114
- Epithelial barrier repair and prevention of allergy vol.129, pp.4, 2011, https://doi.org/10.1172/jci124608
- Intracellular Staphylococcus aureus Elicits the Production of Host Very Long-Chain Saturated Fatty Acids with Antimicrobial Activity vol.9, pp.7, 2011, https://doi.org/10.3390/metabo9070148
- A formulation of neem and hypericum oily extract for the treatment of the wound myiasis by Wohlfahrtia magnifica in domestic animals vol.118, pp.8, 2011, https://doi.org/10.1007/s00436-019-06375-x
- Impact of Selected Cosmetic Ingredients on Common Microorganisms of Healthy Human Skin vol.6, pp.3, 2011, https://doi.org/10.3390/cosmetics6030045
- Antimicrobial activity of certain natural-based plant oils against the antibiotic-resistant acne bacteria vol.27, pp.1, 2020, https://doi.org/10.1016/j.sjbs.2019.11.006
- Antimicrobial Activity of Host-Derived Lipids vol.9, pp.2, 2020, https://doi.org/10.3390/antibiotics9020075
- Excellent antimicrobial performance of co-doped magnetite double-layered ferrofluids fabricated from natural sand vol.32, pp.7, 2011, https://doi.org/10.1016/j.jksus.2020.08.009
- Global proteomic analysis deciphers the mechanism of action of plant derived oleic acid against Candida albicans virulence and biofilm formation vol.10, pp.None, 2011, https://doi.org/10.1038/s41598-020-61918-y
- The Role of Upper Airway Microbiome in the Development of Adult Asthma vol.21, pp.3, 2011, https://doi.org/10.4110/in.2021.21.e19
- The Selective Antibacterial Activity of the Mixed Systems Containing Myristic Acid against Staphylococci vol.70, pp.9, 2011, https://doi.org/10.5650/jos.ess21090
- Selective Antibacterial Activity of Palmitoleic Acid in Emulsions and Other Formulations vol.24, pp.6, 2011, https://doi.org/10.1002/jsde.12529
- Application of Sebum Lipidomics to Biomarkers Discovery in Neurodegenerative Diseases vol.11, pp.12, 2021, https://doi.org/10.3390/metabo11120819