DOI QR코드

DOI QR Code

Proteomic Profiles of Mouse Neuro N2a Cells Infected with Variant Virulence f Rabies Viruses

  • Wang, Xiaohu (College of Animal Science and Veterinary Medicine, Jilin University) ;
  • Zhang, Shoufeng (Laboratory of Epidemiology, Veterinary Research Institute, Academy of Military Medical Sciences) ;
  • Sun, Chenglong (College of Animal Science and Veterinary Medicine, Jilin University) ;
  • Yuan, Zi-Guo (College of Veterinary Medicine, South China Agricultural University) ;
  • Wu, Xianfu (Centers for Disease Control and Prevention) ;
  • Wang, Dongxia (Centers for Disease Control and Prevention) ;
  • Ding, Zhuang (College of Animal Science and Veterinary Medicine, Jilin University) ;
  • Hu, Rongliang (College of Animal Science and Veterinary Medicine, Jilin University)
  • Received : 2010.10.04
  • Accepted : 2011.01.06
  • Published : 2011.04.28

Abstract

We characterized the proteomes of murine N2a cells following infection with three rabies virus (RV) strains, characterized by distinct virulence phenotypes (i.e., virulent BD06, fixed CVS-11, and attenuated SRV9 strains), and identified 35 changes to protein expression using two-dimensional gel electrophoresis in whole-cell lysates. The annotated functions of these proteins are involved in various cytoskeletal, signal transduction, stress response, and metabolic processes. Specifically, a-enolase, prx-4, vimentin, cytokine-induced apoptosis inhibitor 1 (CIAPIN1) and prx-6 were significantly up-regulated, whereas Trx like-1 and galectin-1 were down-regulated following infection of N2a cells with all three rabies virus strains. However, comparing expressions of all 35 proteins affected between BD06-, CVS-11-, and SRV9-infected cells, specific changes in expression were also observed. The up-regulation of vimentin, CIAPIN1, prx-4, and 14-3-3 ${\theta}/{\delta}$, and down-regulation of NDPK-B and HSP-1 with CVS and SRV9 infection were ${\geq}2$ times greater than with BD06. Meanwhile, Zfp12 protein, splicing factor, and arginine/serine-rich 1 were unaltered in the cells infected with BD06 and CVS-11, but were up-regulated in the group infected with SRV9. The proteomic alterations described here may suggest that these changes to protein expression correlate with the rabies virus' adaptability and virulence in N2a cells, and hence provides new clues as to the response of N2a host cells to rabies virus infections, and may also aid in uncovering new pathways in these cells that are involved in rabies infections. Further characterization of the functions of the affected proteins may contribute to our understanding of the mechanisms of RV infection and pathogenesis.

Keywords

References

  1. Aoki, H., J. Hayashi, M. Moriyama, Y. Arakawa, and O. Hino. 2000. Hepatitis C virus core protein interacts with 14-3-3 protein and activates the kinase Raf-1. J. Virol. 74: 1736-1741. https://doi.org/10.1128/JVI.74.4.1736-1741.2000
  2. Da Silva-Azevedo, L., S. Jahne, C. Hoffmann, D. Stalder, M. Heller, A. R. Pries, A. Zakrzewicz, and O. Baum. 2009. Upregulation of the peroxiredoxin-6 related metabolism of reactive oxygen species in skeletal muscle of mice lacking neuronal nitric oxide synthase. J. Physiol. 587: 655-668.
  3. Dietzschold, B., M. Schnell, and H. Koprowski. 2005. Pathogenesis of rabies. Curr. Top. Microbiol. Immunol. 292: 45-56.
  4. Franke, W. W., C. Grund, C. Kuhn, V. P. Lehto, and I. Virtanen. 1984. Transient change of organization of vimentin filaments during mitosis as demonstrated by a monoclonal antibody. Exp. Cell Res. 154: 567-580. https://doi.org/10.1016/0014-4827(84)90181-2
  5. Harris, D., Z. Zhang, B. Chaubey, and V. N. Pandey. 2006. Identification of cellular factors associated with the 3'-nontranslated region of the hepatitis C virus genome. Mol. Cell. Proteomics 5: 1006-1018. https://doi.org/10.1074/mcp.M500429-MCP200
  6. Honer, B., R. L. Shoeman, and P. Traub. 1991. Human immunodeficiency virus type 1 protease microinjected into cultured human skin fibroblasts cleaves vimentin and affects cytoskeletal and nuclear architecture. J. Cell Sci. 100(Pt 4): 799-807.
  7. Kino, T., A. Gragerov, A. Valentin, M. Tsopanomihalou, G. Ilyina-Gragerova, R. Erwin-Cohen, G. P. Chrousos, and G. N. Pavlakis. 2005. Vpr protein of human immunodeficiency virus type 1 binds to 14-3-3 proteins and facilitates complex formation with Cdc25C: Implications for cell cycle arrest. J. Virol. 79: 2780-2787. https://doi.org/10.1128/JVI.79.5.2780-2787.2005
  8. Levesque, K., M. Halvorsen, L. Abrahamyan, L. Chatel-Chaix, V. Poupon, H. Gordon, L. DesGroseillers, A. Gatignol, and A. J. Mouland. 2006. Trafficking of HIV-1 RNA is mediated by heterogeneous nuclear ribonucleoprotein A2 expression and impacts on viral assembly. Traffic 7: 1177-1193. https://doi.org/10.1111/j.1600-0854.2006.00461.x
  9. Li, H. P., X. Zhang, R. Duncan, L. Comai, and M. M. Lai. 1997. Heterogeneous nuclear ribonucleoprotein A1 binds to the transcription-regulatory region of mouse hepatitis virus RNA. Proc. Natl. Acad. Sci. USA 94: 9544-9549. https://doi.org/10.1073/pnas.94.18.9544
  10. Maxwell, K. L. and L. Frappier. 2007. Viral proteomics. Microbiol. Mol. Biol. Rev. 71: 398-411. https://doi.org/10.1128/MMBR.00042-06
  11. Medeiros Caporale, G. M., C. Rodrigues da Silva Ade, Z. M. Peixoto, L. B. Chaves, M. L. Carrieri, and R. C. Vassao. 2009. First production of fluorescent anti-ribonucleoproteins conjugate for diagnostic of rabies in Brazil. J. Clin. Lab. Anal. 23: 7-13. https://doi.org/10.1002/jcla.20275
  12. Mhawech, P. 2005. 14-3-3 proteins -- an update. Cell Res. 15: 228-236. https://doi.org/10.1038/sj.cr.7290291
  13. Nogueira, Y. L. 2004. [Estimate of the validity of a new method for the isolation of rabies virus.] Rev. Saude Publica 38: 315-322. https://doi.org/10.1590/S0034-89102004000200023
  14. Ostareck, D. H., A. Ostareck-Lederer, M. Wilm, B. J. Thiele, M. Mann, and M. W. Hentze. 1997. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3' end. Cell 89: 597-606. https://doi.org/10.1016/S0092-8674(00)80241-X
  15. Pallas, D. C., H. Fu, L. C. Haehnel, W. Weller, R. J. Collier, and T. M. Roberts. 1994. Association of polyomavirus middle tumor antigen with 14-3-3 proteins. Science 265: 535-537. https://doi.org/10.1126/science.8036498
  16. Radtke, K., K. Dohner, and B. Sodeik. 2006. Viral interactions with the cytoskeleton: A hitchhiker's guide to the cell. Cell. Microbiol. 8: 387-400. https://doi.org/10.1111/j.1462-5822.2005.00679.x
  17. Rhee, S. G., S. W. Kang, T. S. Chang, W. Jeong, and K. Kim. 2001. Peroxiredoxin, a novel family of peroxidases. IUBMB Life 52: 35-41. https://doi.org/10.1080/15216540252774748
  18. Rupprecht, C. E., B. Dietzschold, J. H. Cox, and L. G. Schneider. 1989. Oral vaccination of raccoons (Procyon lotor) with an attenuated (SAD-B19) rabies virus vaccine. J. Wildl. Dis. 25: 548-554.
  19. Shi, S. T., G. Y. Yu, and M. M. Lai. 2003. Multiple type A/B heterogeneous nuclear ribonucleoproteins (hnRNPs) can replace hnRNP A1 in mouse hepatitis virus RNA synthesis. J. Virol. 77: 10584-10593. https://doi.org/10.1128/JVI.77.19.10584-10593.2003
  20. Shibayama, H., E. Takai, I. Matsumura, M. Kouno, E. Morii, Y. Kitamura, J. Takeda, and Y. Kanakura. 2004. Identification of a cytokine-induced antiapoptotic molecule anamorsin essential for definitive hematopoiesis. J. Exp. Med. 199: 581-592. https://doi.org/10.1084/jem.20031858
  21. Shoeman, R. L., B. Honer, T. J. Stoller, C. Kesselmeier, M. C. Miedel, P. Traub, and M. C. Graves. 1990. Human immunodeficiency virus type 1 protease cleaves the intermediate filament proteins vimentin, desmin, and glial fibrillary acidic protein. Proc. Natl. Acad. Sci. USA 87: 6336-6340. https://doi.org/10.1073/pnas.87.16.6336
  22. Smith, A. L., G. H. Tignor, R. W. Emmons, and J. D. Woodie. 1978. Isolation of field rabies virus strains in CER and murine neuroblastoma cell cultures. Intervirology 9: 359-361. https://doi.org/10.1159/000148958
  23. Stefanovic, S., M. Windsor, K. I. Nagata, M. Inagaki, and T. Wileman. 2005. Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II. J. Virol. 79: 11766-11775. https://doi.org/10.1128/JVI.79.18.11766-11775.2005
  24. Stoltzfus, C. M. and J. M. Madsen. 2006. Role of viral splicing elements and cellular RNA binding proteins in regulation of HIV-1 alternative RNA splicing. Curr. HIV Res. 4: 43-55. https://doi.org/10.2174/157016206775197655
  25. Sun, J., Y. Jiang, Z. Shi, Y. Yan, H. Guo, F. He, and C. Tu. 2008. Proteomic alteration of PK-15 cells after infection by classical swine fever virus. J. Proteome Res. 7: 5263-5269. https://doi.org/10.1021/pr800546m
  26. Xie, H. Y., W. L. Xia, C. C. Zhang, L. M. Wu, H. F. Ji, Y. Cheng, and S. S. Zheng. 2007. Evaluation of hepatitis B virus replication and proteomic analysis of HepG2.2.15 cell line after cyclosporine A treatment. Acta Pharmacol. Sin. 28: 975-984. https://doi.org/10.1111/j.1745-7254.2007.00590.x
  27. Yano, M., H. J. Okano, and H. Okano. 2005. Involvement of Hu and heterogeneous nuclear ribonucleoprotein K in neuronal differentiation through p21 mRNA post-transcriptional regulation. J. Biol. Chem. 280: 12690-12699.
  28. Zandi, F., N. Eslami, M. Soheili, A. Fayaz, A. Gholami, and B. Vaziri. 2009. Proteomics analysis of BHK-21 cells infected with a fixed strain of rabies virus. Proteomics 9: 2399-2407. https://doi.org/10.1002/pmic.200701007
  29. Zheng, X., L. Hong, L. Shi, J. Guo, Z. Sun, and J. Zhou. 2008. Proteomics analysis of host cells infected with infectious bursal disease virus. Mol. Cell. Proteomics 7: 612-625.
  30. Zhou, Y., K. H. Kok, A. C. Chun, C. M. Wong, H. W. Wu, M. C. Lin, P. C. Fung, H. Kung, and D. Y. Jin. 2000. Mouse peroxiredoxin V is a thioredoxin peroxidase that inhibits p53- induced apoptosis. Biochem. Biophys. Res. Commun. 268: 921- 927. https://doi.org/10.1006/bbrc.2000.2231

Cited by

  1. Proteome analysis of virus-host cell interaction: rabies virus replication in Vero cells in two different media vol.97, pp.12, 2013, https://doi.org/10.1007/s00253-013-4939-1
  2. Proteomics analysis of human brain tissue infected by street rabies virus vol.40, pp.11, 2011, https://doi.org/10.1007/s11033-013-2759-0
  3. Quantitative proteomics leads to identify dog brain proteins involved in rabies virus infection: implication in understanding viral pathophysiology vol.11, pp.4, 2011, https://doi.org/10.1007/s42485-020-00051-w
  4. Delineation of altered brain proteins associated with furious rabies virus infection in dogs by quantitative proteomics vol.253, pp.None, 2011, https://doi.org/10.1016/j.jprot.2021.104463