DOI QR코드

DOI QR Code

Production and Characterization of a Novel Protease from Bacillus sp. RRM1 Under Solid State Fermentation

  • Received : 2011.01.05
  • Accepted : 2011.03.21
  • Published : 2011.06.28

Abstract

A commercially important alkaline protease, produced by Bacillus sp. RRM1 isolated from the red seaweed Kappaphycus alvarezii (Doty) Doty ex Silva, was first recognized and characterized in the present study. Identification of the isolated bacterium was done using both biochemical characterization as well as 16S rRNA gene sequencing. The bacterial strain, Bacillus sp. RRM1, produced a high level of protease using easily available, inexpensive agricultural residues solid-state fermentation (SSF). Among them, wheat bran was found to be the best substrate. Influences of process parameters such as moistening agents, moisture level, temperature, inoculum concentration, and co-carbon and co-nitrogen sources on the fermentation were also evaluated. Under optimized conditions, maximum protease production (i.e., 2081 U/g) was obtained from wheat bran, which is about 2-fold greater than the initial conditions. The protease enzyme was stable over a temperature range of 30-$60^{\circ}C$ and pH 6-12, with maximum activity at $50^{\circ}C$ and pH 9.0. Whereas the metal ions $Na^+$, $Ca^{2+}$, and $K^+$ enhanced the activity of the enzyme, others such as $Hg^{2+}$, $Cu^{2+}$, $Fe^{2+}$, $Co^{2+}$, and $Zn^{2+}$ had rendered negative effects. The activity of the enzyme was inhibited by EDTA and enhanced by $Cu^{2+}$ ions, thus indicating the nature of the enzyme as a metalloprotease. The enzyme showed extreme stability and activity even in the presence of detergents, surfactants, and organic solvents. Moreover, the present findings opened new vistas in the utilization of wheat bran, a cheap, abundantly available, and effective waste as a substrate for SSF.

Keywords

References

  1. Adreas, K. G., I. Annette, L. R. C. Pinto, and M. G. F. Denise. 1999. Lipase production by Penicillium restricum in solid state fermentation using Babassu oil cake as substrate. Process Biochem. 35: 85-90. https://doi.org/10.1016/S0032-9592(99)00036-9
  2. Aikat, K. and B. C. Bhattacharyya. 2000. Protease extraction in solid-state fermentation of wheat bran by a local strain of Rhizopus oryzae and growth studies by the soft gel technique. Process Biochem. 35: 907-914. https://doi.org/10.1016/S0032-9592(99)00148-X
  3. Annapurna, R. A., N. K. Chandrababu, N. Samivelu, C. Rose, and N. M. Rao. 1996. Eco-friendly enzymatic dehairing using extracellular protease from Bacillus species isolate. J. Am. Leath. Chem. Assoc. 91: 115-119.
  4. Battan, B., J. Sharma, and R. C. Kuhad. 2006. High level xylanase production by alkaliphlic Bacillus pumilus ASH under solid state fermentation. World J. Microbiol. Biotechnol. 22: 1281-1287. https://doi.org/10.1007/s11274-006-9173-x
  5. Beg, Q. K., R. K. Saxena, and R. Gupta. 2002. De-repression and subsequent induction of protease synthesis by Bacillus mojavensis under fed-batch operations. Process Biochem. 37: 1103-1109. https://doi.org/10.1016/S0032-9592(01)00320-X
  6. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  7. Chakraborty, R. and M. J. Srinivasan. 1993. Production of a thermo stable alkaline protease by a new Pseudomonas sp. by solid-substrate fermentation. J. Microbiol. Technol. 8: 7-16.
  8. Chellappan, S., C. Jasmin, S. M. Basheer, K. K. Elyas, S. G. Bhat, and M. Chandrasekaran. 2006. Production, purification and partial characterization of a novel protease from marine Engyodontium album BTMFS10 under solid state fermentation. Process Biochem. 41: 956-961. https://doi.org/10.1016/j.procbio.2005.10.017
  9. Chen, X. G., O. Stabnikova, J. H. Tay, J. Y. Wang, and S. T. L. Tay. 2004. Thermo active extra cellular proteases of Geobacillus caldoproteolyticus, sp. nov., from sewage sludge. Extremophiles 8: 489-498. https://doi.org/10.1007/s00792-004-0412-5
  10. Doddapaneni, K. K., R. Tatineni, R. N. Vellanki, B. Gandu, N. R. Panyala, B. Chakali, and L.N. Mangamoori. 2007. Purification and characterization of two novel extracellular proteases from Serratia rubidaea. Process Biochem. 42: 1229-1236. https://doi.org/10.1016/j.procbio.2007.05.019
  11. Donaghy, J. A. and A. M. McKay. 1993. Production and properties of an alkaline protease by Aureobasidium pullulans. J. Appl. Bacteriol. 74: 662-666. https://doi.org/10.1111/j.1365-2672.1993.tb05200.x
  12. Frikha, B., A. Kamoun, and M. Nasri. 2003. Stability studies of protease from Bacillus cereus BG1. Enzyme Microb. Technol. 32: 513-518. https://doi.org/10.1016/S0141-0229(03)00004-8
  13. Gessesse, A. 1997. The use of nug meal as a low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR- 009 and some properties of the enzyme. Bioresour. Technol. 62: 59-61. https://doi.org/10.1016/S0960-8524(97)00059-X
  14. Glaser, V. 2000. Steady growth for industrial enzyme market. Genetic Eng. News 20: 8-36.
  15. Greene, R. V. 1994. Challenges from the sea: Marine shipworms and their symbiotic bacterium. Soc. Ind. Microbiol. News 44: 51-59.
  16. Greene, R. V., M. A. Cotta, and H. L. Grifn. 1989. A novel, symbiotic bacterium isolated from marine shipworm secretes proteolytic activity. Curr. Microbiol. 19: 353-356. https://doi.org/10.1007/BF01570881
  17. Hesseltine, C. W. 1972. Solid state fermentation. Biotechnol. Bioeng. 14: 517-532. https://doi.org/10.1002/bit.260140402
  18. Jiang, R., S. Huang, T. A. Chow, and J. Yang. 2009. Nitric oxide removal from flue gas with a biotrickling filter using Pseudomonas putida. J. Hazard. Mater. 164: 432-441. https://doi.org/10.1016/j.jhazmat.2008.08.058
  19. Johnvesly, B., B. R. Manjunath, and G. R. Naik. 2002. Pigeon pea waste as a novel, inexpensive, substrate for production of a thermostable alkaline protease from thermoalkalophilic Bacillus sp. JB-99. Bioresour. Technol. 82: 61-64. https://doi.org/10.1016/S0960-8524(01)00147-X
  20. Kanekar, P. P., S. S. Nilegaonkar, S. S. Sarnaik, and A. S. Kelkar. 2002. Optimization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India. Bioresour. Technol. 85: 87-93. https://doi.org/10.1016/S0960-8524(02)00018-4
  21. Kaur, S., R. M. Vohra, M. Kapoor, Q. K. Beg, and G. S. Hoondal. 2001. Enhanced production and characterization of a highly thermostable alkaline protease from Bacillus sp. P-2. World J. Microbiol. Biotechnol. 17: 125-129. https://doi.org/10.1023/A:1016637528648
  22. Kim, S., Y. Kim, and I. Rhee. 2001. Purification and characterization of a novel extracellular protease from Bacillus cereus KCTC 3674. Arch. Microbiol. 175: 458-461. https://doi.org/10.1007/s002030100282
  23. Kota, K. P. and P. Sridhar. 1999. Solid state cultivation of Streptomyces clavuligerus for cephamycin C production. Process Biochem. 34: 325-328. https://doi.org/10.1016/S0032-9592(98)00078-8
  24. Kumar, C. G. and H. Takagi. 1999. Microbial alkaline proteases: From a bio industrial viewpoint. Biotechnol. Adv. 17: 561-594. https://doi.org/10.1016/S0734-9750(99)00027-0
  25. Lonsane, B. K., N. P. Ghilgyal, S. Budiatnan, and S. V. Ramakrishna. 1985. Engineering aspects of solid state fermentation. Enzyme Microb. Technol. 7: 258-265. https://doi.org/10.1016/0141-0229(85)90083-3
  26. Marchesi, J. R., T. Sato, J. W. Andrew, T. A. Martin, J. C. Fry, S. J. Hiom, and W. G. Wade. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64: 795-799.
  27. Murthy, M. V. R., E. V. S. Mohan, and A. K. Sadhukhan. 1999. Cyclosporin A production by Tolypocladium inatum using solid state fermentation. Process Biochem. 34: 269-280. https://doi.org/10.1016/S0032-9592(98)00095-8
  28. Musa, N. and S. W. Wei. 2008. Bacteria attached on culture seaweed Gracilaria changii at Mengabang Telipot, Terengganu. Acad. J. Plant Sci. 1: 01-04.
  29. Nilegaonkar, S. S., P. P. Kanekar, S. S. Sarnaik, and M. S. Kelkar. 2002. Production, isolation and characterization of extracellular protease of an alkaliphilic strain of Arthrobacter ramosus, MCM B-351 isolated from the alkaline lake of Lonar, India. World J. Microbiol. Biotechnol. 18: 785-789. https://doi.org/10.1023/A:1020481126362
  30. Pandey, A., C. R. Soccol, P. Nigam, D. Brand, R. Mohan, and S. Roussos. 2000. Biotechnological potential of coffee pulp and coffee husk for bioprocess. Biochem. Eng. J. 6: 153-162. https://doi.org/10.1016/S1369-703X(00)00084-X
  31. Prakasham, R. S., Ch. Subba Rao, and P. N. Sarma. 2006. Green gram husks-an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour. Technol. 97: 1449-1454. https://doi.org/10.1016/j.biortech.2005.07.015
  32. Ramakrishnan, N. 1999. Nitrogen fixing bacteria associated with marine brown algae. Doctoral Thesis. University of Madras, India.
  33. Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597-635.
  34. Sana, B., D. Ghosh, M. Saha, and J. Mukherjee. 2006. Purification and characterization of a salt, solvent, detergent and bleach tolerant protease from a new gamma-Proteobacterium isolated from the marine environment of the Sundarbans. Process Biochem. 41: 208-215. https://doi.org/10.1016/j.procbio.2005.09.010
  35. Sellami-Kamoun, A., A. Haddar, N. El-Hadj Ali, B. Ghorbel- Frikha, S. Kanoun, and M. Nasri. 2008. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol. Res. 163: 299- 306. https://doi.org/10.1016/j.micres.2006.06.001
  36. Seneath, P. H. A., N. S. Mair, E. M. Sharpe, and J. G. Holt (Eds.). 1986. Bergey's Manual of Systematic Bacteriology, 9th Ed. Williams and Wilkins, Baltimore.
  37. Uyar, F. and Z. Baysal. 2004. Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid-state fermentation. Process Biochem. 39: 1893-1898. https://doi.org/10.1016/j.procbio.2003.09.016
  38. Vanderberghe, L. P. S., C. R. Soccol, A. Pandey, and J. M. Lebeault. 2000. Citric acid production by Aspergillus niger in solid state fermentation. Bioresour. Technol. 74: 175-178. https://doi.org/10.1016/S0960-8524(99)00107-8
  39. Zandrazil, F. and H. Brunert. 1981. Investigation of physical parameters important for solid state fermentation of straw by white rot fungi. Eur. J. Appl. Microbiol. Biotechnol. 11: 183-188. https://doi.org/10.1007/BF00511259

Cited by

  1. Cow Dung Substrate for the Potential Production of Alkaline Proteases by Pseudomonas putida Strain AT in Solid-State Fermentation vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/217434
  2. Bioprocess optimization for production of thermoalkali-stable protease from Bacillus subtilis K-1 under solid-state fermentation vol.46, pp.7, 2016, https://doi.org/10.1080/10826068.2015.1135455
  3. Bioconversion of agro-industrial wastes for the production of fibrinolytic enzyme from Bacillus halodurans IND18: Purification and biochemical characterization vol.20, pp.None, 2011, https://doi.org/10.1016/j.ejbt.2016.01.002
  4. Alkaline Protease Production from Brevibacterium luteolum (MTCC 5982) Under Solid-State Fermentation and Its Application for Sulfide-Free Unhairing of Cowhides vol.182, pp.2, 2017, https://doi.org/10.1007/s12010-016-2341-z
  5. Preparation and application of unhairing enzyme using solid wastes from the leather industry-an attempt toward internalization of solid wastes within the leather industry vol.25, pp.3, 2011, https://doi.org/10.1007/s11356-017-0550-9
  6. Production and partial characterization of dehairing alkaline protease from Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 by using organic municipal solid wastes vol.4, pp.6, 2011, https://doi.org/10.1016/j.heliyon.2018.e00646
  7. Comparative genomics study reveals Red Sea Bacillus with characteristics associated with potential microbial cell factories (MCFs) vol.9, pp.1, 2011, https://doi.org/10.1038/s41598-019-55726-2
  8. Optimization of Conditions for the Higher Level Production of Protease: Characterization of Protease from Geobacillus SBS-4S vol.11, pp.12, 2020, https://doi.org/10.1007/s12649-020-00935-4
  9. Production of β-glucanase and protease from Bacillus velezensis strain isolated from the manure of piglets vol.51, pp.5, 2011, https://doi.org/10.1080/10826068.2020.1833344