References
- Adreas, K. G., I. Annette, L. R. C. Pinto, and M. G. F. Denise. 1999. Lipase production by Penicillium restricum in solid state fermentation using Babassu oil cake as substrate. Process Biochem. 35: 85-90. https://doi.org/10.1016/S0032-9592(99)00036-9
- Aikat, K. and B. C. Bhattacharyya. 2000. Protease extraction in solid-state fermentation of wheat bran by a local strain of Rhizopus oryzae and growth studies by the soft gel technique. Process Biochem. 35: 907-914. https://doi.org/10.1016/S0032-9592(99)00148-X
- Annapurna, R. A., N. K. Chandrababu, N. Samivelu, C. Rose, and N. M. Rao. 1996. Eco-friendly enzymatic dehairing using extracellular protease from Bacillus species isolate. J. Am. Leath. Chem. Assoc. 91: 115-119.
- Battan, B., J. Sharma, and R. C. Kuhad. 2006. High level xylanase production by alkaliphlic Bacillus pumilus ASH under solid state fermentation. World J. Microbiol. Biotechnol. 22: 1281-1287. https://doi.org/10.1007/s11274-006-9173-x
- Beg, Q. K., R. K. Saxena, and R. Gupta. 2002. De-repression and subsequent induction of protease synthesis by Bacillus mojavensis under fed-batch operations. Process Biochem. 37: 1103-1109. https://doi.org/10.1016/S0032-9592(01)00320-X
- Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Chakraborty, R. and M. J. Srinivasan. 1993. Production of a thermo stable alkaline protease by a new Pseudomonas sp. by solid-substrate fermentation. J. Microbiol. Technol. 8: 7-16.
- Chellappan, S., C. Jasmin, S. M. Basheer, K. K. Elyas, S. G. Bhat, and M. Chandrasekaran. 2006. Production, purification and partial characterization of a novel protease from marine Engyodontium album BTMFS10 under solid state fermentation. Process Biochem. 41: 956-961. https://doi.org/10.1016/j.procbio.2005.10.017
- Chen, X. G., O. Stabnikova, J. H. Tay, J. Y. Wang, and S. T. L. Tay. 2004. Thermo active extra cellular proteases of Geobacillus caldoproteolyticus, sp. nov., from sewage sludge. Extremophiles 8: 489-498. https://doi.org/10.1007/s00792-004-0412-5
- Doddapaneni, K. K., R. Tatineni, R. N. Vellanki, B. Gandu, N. R. Panyala, B. Chakali, and L.N. Mangamoori. 2007. Purification and characterization of two novel extracellular proteases from Serratia rubidaea. Process Biochem. 42: 1229-1236. https://doi.org/10.1016/j.procbio.2007.05.019
- Donaghy, J. A. and A. M. McKay. 1993. Production and properties of an alkaline protease by Aureobasidium pullulans. J. Appl. Bacteriol. 74: 662-666. https://doi.org/10.1111/j.1365-2672.1993.tb05200.x
- Frikha, B., A. Kamoun, and M. Nasri. 2003. Stability studies of protease from Bacillus cereus BG1. Enzyme Microb. Technol. 32: 513-518. https://doi.org/10.1016/S0141-0229(03)00004-8
- Gessesse, A. 1997. The use of nug meal as a low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR- 009 and some properties of the enzyme. Bioresour. Technol. 62: 59-61. https://doi.org/10.1016/S0960-8524(97)00059-X
- Glaser, V. 2000. Steady growth for industrial enzyme market. Genetic Eng. News 20: 8-36.
- Greene, R. V. 1994. Challenges from the sea: Marine shipworms and their symbiotic bacterium. Soc. Ind. Microbiol. News 44: 51-59.
- Greene, R. V., M. A. Cotta, and H. L. Grifn. 1989. A novel, symbiotic bacterium isolated from marine shipworm secretes proteolytic activity. Curr. Microbiol. 19: 353-356. https://doi.org/10.1007/BF01570881
- Hesseltine, C. W. 1972. Solid state fermentation. Biotechnol. Bioeng. 14: 517-532. https://doi.org/10.1002/bit.260140402
- Jiang, R., S. Huang, T. A. Chow, and J. Yang. 2009. Nitric oxide removal from flue gas with a biotrickling filter using Pseudomonas putida. J. Hazard. Mater. 164: 432-441. https://doi.org/10.1016/j.jhazmat.2008.08.058
- Johnvesly, B., B. R. Manjunath, and G. R. Naik. 2002. Pigeon pea waste as a novel, inexpensive, substrate for production of a thermostable alkaline protease from thermoalkalophilic Bacillus sp. JB-99. Bioresour. Technol. 82: 61-64. https://doi.org/10.1016/S0960-8524(01)00147-X
- Kanekar, P. P., S. S. Nilegaonkar, S. S. Sarnaik, and A. S. Kelkar. 2002. Optimization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India. Bioresour. Technol. 85: 87-93. https://doi.org/10.1016/S0960-8524(02)00018-4
- Kaur, S., R. M. Vohra, M. Kapoor, Q. K. Beg, and G. S. Hoondal. 2001. Enhanced production and characterization of a highly thermostable alkaline protease from Bacillus sp. P-2. World J. Microbiol. Biotechnol. 17: 125-129. https://doi.org/10.1023/A:1016637528648
- Kim, S., Y. Kim, and I. Rhee. 2001. Purification and characterization of a novel extracellular protease from Bacillus cereus KCTC 3674. Arch. Microbiol. 175: 458-461. https://doi.org/10.1007/s002030100282
- Kota, K. P. and P. Sridhar. 1999. Solid state cultivation of Streptomyces clavuligerus for cephamycin C production. Process Biochem. 34: 325-328. https://doi.org/10.1016/S0032-9592(98)00078-8
- Kumar, C. G. and H. Takagi. 1999. Microbial alkaline proteases: From a bio industrial viewpoint. Biotechnol. Adv. 17: 561-594. https://doi.org/10.1016/S0734-9750(99)00027-0
- Lonsane, B. K., N. P. Ghilgyal, S. Budiatnan, and S. V. Ramakrishna. 1985. Engineering aspects of solid state fermentation. Enzyme Microb. Technol. 7: 258-265. https://doi.org/10.1016/0141-0229(85)90083-3
- Marchesi, J. R., T. Sato, J. W. Andrew, T. A. Martin, J. C. Fry, S. J. Hiom, and W. G. Wade. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64: 795-799.
- Murthy, M. V. R., E. V. S. Mohan, and A. K. Sadhukhan. 1999. Cyclosporin A production by Tolypocladium inatum using solid state fermentation. Process Biochem. 34: 269-280. https://doi.org/10.1016/S0032-9592(98)00095-8
- Musa, N. and S. W. Wei. 2008. Bacteria attached on culture seaweed Gracilaria changii at Mengabang Telipot, Terengganu. Acad. J. Plant Sci. 1: 01-04.
- Nilegaonkar, S. S., P. P. Kanekar, S. S. Sarnaik, and M. S. Kelkar. 2002. Production, isolation and characterization of extracellular protease of an alkaliphilic strain of Arthrobacter ramosus, MCM B-351 isolated from the alkaline lake of Lonar, India. World J. Microbiol. Biotechnol. 18: 785-789. https://doi.org/10.1023/A:1020481126362
- Pandey, A., C. R. Soccol, P. Nigam, D. Brand, R. Mohan, and S. Roussos. 2000. Biotechnological potential of coffee pulp and coffee husk for bioprocess. Biochem. Eng. J. 6: 153-162. https://doi.org/10.1016/S1369-703X(00)00084-X
- Prakasham, R. S., Ch. Subba Rao, and P. N. Sarma. 2006. Green gram husks-an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour. Technol. 97: 1449-1454. https://doi.org/10.1016/j.biortech.2005.07.015
- Ramakrishnan, N. 1999. Nitrogen fixing bacteria associated with marine brown algae. Doctoral Thesis. University of Madras, India.
- Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597-635.
- Sana, B., D. Ghosh, M. Saha, and J. Mukherjee. 2006. Purification and characterization of a salt, solvent, detergent and bleach tolerant protease from a new gamma-Proteobacterium isolated from the marine environment of the Sundarbans. Process Biochem. 41: 208-215. https://doi.org/10.1016/j.procbio.2005.09.010
- Sellami-Kamoun, A., A. Haddar, N. El-Hadj Ali, B. Ghorbel- Frikha, S. Kanoun, and M. Nasri. 2008. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol. Res. 163: 299- 306. https://doi.org/10.1016/j.micres.2006.06.001
- Seneath, P. H. A., N. S. Mair, E. M. Sharpe, and J. G. Holt (Eds.). 1986. Bergey's Manual of Systematic Bacteriology, 9th Ed. Williams and Wilkins, Baltimore.
- Uyar, F. and Z. Baysal. 2004. Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid-state fermentation. Process Biochem. 39: 1893-1898. https://doi.org/10.1016/j.procbio.2003.09.016
- Vanderberghe, L. P. S., C. R. Soccol, A. Pandey, and J. M. Lebeault. 2000. Citric acid production by Aspergillus niger in solid state fermentation. Bioresour. Technol. 74: 175-178. https://doi.org/10.1016/S0960-8524(99)00107-8
- Zandrazil, F. and H. Brunert. 1981. Investigation of physical parameters important for solid state fermentation of straw by white rot fungi. Eur. J. Appl. Microbiol. Biotechnol. 11: 183-188. https://doi.org/10.1007/BF00511259
Cited by
- Cow Dung Substrate for the Potential Production of Alkaline Proteases by Pseudomonas putida Strain AT in Solid-State Fermentation vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/217434
- Bioprocess optimization for production of thermoalkali-stable protease from Bacillus subtilis K-1 under solid-state fermentation vol.46, pp.7, 2016, https://doi.org/10.1080/10826068.2015.1135455
- Bioconversion of agro-industrial wastes for the production of fibrinolytic enzyme from Bacillus halodurans IND18: Purification and biochemical characterization vol.20, pp.None, 2011, https://doi.org/10.1016/j.ejbt.2016.01.002
- Alkaline Protease Production from Brevibacterium luteolum (MTCC 5982) Under Solid-State Fermentation and Its Application for Sulfide-Free Unhairing of Cowhides vol.182, pp.2, 2017, https://doi.org/10.1007/s12010-016-2341-z
- Preparation and application of unhairing enzyme using solid wastes from the leather industry-an attempt toward internalization of solid wastes within the leather industry vol.25, pp.3, 2011, https://doi.org/10.1007/s11356-017-0550-9
- Production and partial characterization of dehairing alkaline protease from Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 by using organic municipal solid wastes vol.4, pp.6, 2011, https://doi.org/10.1016/j.heliyon.2018.e00646
- Comparative genomics study reveals Red Sea Bacillus with characteristics associated with potential microbial cell factories (MCFs) vol.9, pp.1, 2011, https://doi.org/10.1038/s41598-019-55726-2
- Optimization of Conditions for the Higher Level Production of Protease: Characterization of Protease from Geobacillus SBS-4S vol.11, pp.12, 2020, https://doi.org/10.1007/s12649-020-00935-4
- Production of β-glucanase and protease from Bacillus velezensis strain isolated from the manure of piglets vol.51, pp.5, 2011, https://doi.org/10.1080/10826068.2020.1833344